Cherenkov Telescopes for Gamma-Ray Astrophysics

W. Hofmann MPI für Kernphysik, Heidelberg

Cosmic sources of high-energy particles

Propagation

- Optically thick sources
- Interactions with "starlight"
- Interactions with CMB
- Diffusion in magn. fields
- Effects of quantum gravity ...

AGN jets Supernova shock waves Decaying strings Annihilating SUSY particles

Identify mechanisms using

- Particle composition
- Wide-band energy spectra
- Spatial and temporal characteristics

Cosmic Rays:

messengers of the nonthermal Universe

however, cosmic rays cannot be used to image the Universe...

Prime instrument for gamma ray astrophysics in the TeV regime: **Cherenkov Telescopes**

Example: the 100 MeV Region of EGRET

... would like to see the same image for VHE gamma rays and neutrinos ...

Emission mechanisms: the Crab tutorial

The Crab: gammas from electrons

Spectra $d\phi_{E}/dlogE$ Electrons $dN/dE \sim E^{-2}$ Cooling $\sim E_{max}^{2}B$ KN ynchrotron Inverse **-**-1.5 Compton ~ E^{-1.5} logE E_{\max}

 $dE/dt_{Sy} = k\gamma^2 U_{mag}$ $dE/dt_{IC} = k\gamma^2 U_{rad}$

- Knowing U_{rad}, use ratio of peaks to determine U_{mag} ~ B²
- Then determine E_{max} from synchr. peak

Important: multiwavelength studies

Cherenkov Telescopes - Basics -

Imaging atmospheric Cherenkov telescopes

Pioneered by the WHIPPLE group

Perfectioned in CAT telescope

Stereoscopy with HEGRA

WHIPPLE 490 PMT camera

Image orientation→ Shower direction

Image shape→ Shower parent

Image gallery

 5°

Air showers are a bit like meteors

Telling γ -rays from hadronic cosmic rays

Image width normalized to expected width for γ

Signal and background

Significance (for faint source) ~ Signal / $\sqrt{Background}$

Background ~ $\Delta \theta^2 \eta_{CR}$

HEGRA, Mkn 501 (No cuts)

Progress

Time to detect the Crab Nebula: first Whipple detection 1989: 50 h

 $\begin{bmatrix} 1 & 20 & & & & \\ 15 & & & & \\ 5 & & & & \\ -5 & & & & \\ -10 & & & & \\ -15 & & & & \\ -20 & -15 & -10 & -5 & 0 & 5 & 10 & 15 & 20 \\ & & & & & & \\ x \text{ [arc min]} \end{bmatrix}$

HEGRA Crab Sample: 3 arc-min resolution very little background HEGRA 1997: 10 min

> HESS 2003: 15 sec

also online: non-imaging Cherenkov instruments

CELESTE @ Themis

- Very large mirror area (2000+ m²)
- Very low threshold (some 10 GeV)

Obstacles: snow, ice ...

... and fire (HEGRA 1997)

La Palma Summer 2000

State of the field

evolving

from

- source hunting
- order-of-magnitude flux estimates
- Crab-level sensitivity

to provide

- "precision" spectroscopy with $\Delta E/E \sim 10-20\%$
- flux determinations at the 10-20% level
- spatial mapping of sources
- source locations to a few arcseconds
- mCrab-level sensitivity
- taxonomy of sources

Large projects in high-energy gamma-ray astronomy

Sensitivity

from GLAST science doc.

Outline – Part I

- 1. Cherenkov telescopes basics
- 2. Characteristics of Cherenkov light
 - Distribution
 - Timing characteristics
 - Polarization
 - Influence of the atmosphere
 - Effects of the geomagnetic field
- 3. Imaging Cherenkov telescopes
 - Mount
 - Mirrors and optics
 - Camera and readout
 - Triggering
 - Image analysis
 - Calibration
 - Flux determination
- 4. Non-imaging Cherenkov instruments
- 5. The future

Characteristics of Cherenkov Light

Light yield

Radial distribution of Cherenkov light

Time profile of wave front

Х

HEGRA Data, Aharonian et al. Astroparticle Phys. 11 (1999) 363

Polarization of Cherenkov light

Influence of the Atmosphere

Spectrum of Cherenkov light

Atmospheric profile & light intensity

Atmospheric density profile influences both shower development and Cherenkov emission

Potentially large (> 10%) effects on energy calibration

K. Bernlöhr astro-ph/9908093

Effects of the Geomagnetic Field

Geomagnetic deflection of primary pair limits angular resolution at low energies (starts to become relevant at a few 100 GeV)

Effect I:

- Change of effective shower direction
- Depends on energy splitting in primary conversion
- Cannot be corrected

Angular resolution limits

for "ideal" detector, limited by

- Shower fluctuations
- Geomagnetic field

Shower model

Shower image w/o field

Shower image with field

Effect II:

- Image rotation due to widening of cascade
- Can be corrected

P.M. Chadwick et al., J. Phys. G 26 (2000) L5; J. Phys. G 25 (1999) 1223

Effect III:

- Reduced image intensity for for core distances below a few 100 m
- Cannot be recovered

Where to be?

P.M. Chadwick et al., J. Phys. G 26 (2000) L5; J. Phys. G 25 (1999) 1223

Imaging Cherenkov telescopes

HEGRA & H.E.S.S.

Cameras

Telescope parameters

Telescope	Mirror area (m²)	Focal length (m)	f/d	Mirror type	PMTs per camera
Whipple	72	7.3 0.7		Glass	37 ightarrow 490
CANGAROO I	11	3.8	1.0	AlumPolished	256
Durham MK VI	3 x 42	7	1.0	Alum. HC	109 / 19
CAT	18	6	1.2	Ground-Glass	600
HEGRA System	4 x 8.5	5	1.4	Ground-Glass	271
MAGIC	234	17	1.0	AlumMilled	577
CANGAROO III	4 x 57	8	0.8	Composite	427
H.E.S.S.	4 x 108	15	1.2	Ground-Glass	960
VERITAS	7 x 75	12	1.2	Glass	499

Design criteria of next-generation instruments

Complex optimization strategies...

(My interpretation of) the VERITAS strategy:

Mount and Dish

CANGAROO

VERITAS Welded-steel structure, commercial positioner Cost optimized

H.E.S.S. Steel spaceframe (welded) Cost optimized

MAGIC

Carbon fibre spaceframe (MERO, screwed), permanent active mirror control Optimized for fast slewing (GRB hunting)

Mount and dish parameters

	Mirror area (m²)	Weight (t)	Slew speed (degr./min)
MAGIC	234	40	> 300
H.E.S.S. (4 Tel.)	108	60	100
VERITAS (7 Tel.)	75	16	30/60
CANGAROO III (4 Tel.)	57	~8	?

Mirrors and optics

Parameters of optical systems

	Reflector	f/d	# of mirror tiles	Material		nape	Align- ment
MAGIC	Parabolic	1.0	936	Milled aluminum con anodized	comp. square		Motors
H.E.S.S.	Davies- Cotton	1.2	382	Ground glass, alum quartz coated	nin., ro	ound	Motors
VERITAS	Davies- Cotton	1.2	~ 300	Glass, aluminized anodized	l,	nex	Manual
CANGAROO III	Parabolic	0.8	114	Composite, aluminu	um, ro	ound	Motors
Davies-Cotton • better off-axis imaging • Same focal length for all mirror elements Parabolic • Minimizes time dispersion of photons					quare of Now full	hex n area c	nirrors overage

Mirror alignment

Mostly motor-driven actuators with encoders, remote-controlled by a CCD viewing the image

CANGAROO II

H.E.S.S.:

Typical accuracy 0.01 mrad rms, compared to single-mirror spot size of about 0.2 mrad rms

Winston cones for light collection

Winston cones serve to

- improve light collection
- limit the field of view of a pixel and reduce albedo

Cherenkov Cameras

Camera characteristics

Telescope	Year	PMTs per camera	Pixel size (degr.)	F.o.V. (degr.)	Signal transm.	Readout
Whipple	1983	37	0.5	3.5	cable	ADC
CANGAROO I	1992	220	0.18	3.0	cable	ADC+TDC
Durham MK VI	1995	91 + 18	0.25 / 0.5	~ 2.8 / 3.8	cable	ADC
САТ	1996	546 + 54	0.12 / 0.4	3.1 / 4.8	cable	ADC
HEGRA	1996	271	0.25	4.3	cable	120 MHz FADC
Whipple	1997	331	0.25	5.0	cable	ADC
Whipple	1999	379 + 111	0.12 / 0.24	2.6 / 4.0	cable / fiber	ADC
CANGAROO III	2000/ 2002	427	0.17	4.0	cable	ADC+TDC
MAGIC	2002	396 + 180	0.1 / 0.2	2.2 / 3.9	opt. fiber	300 MHz FADC
H.E.S.S.	2002	960	0.16	5.0	electronics in camera	1 GHz ARS / ADC
VERITAS	2003	499	0.15	3.5	cable	500 MHz FADC

Camera characteristics

Pixel size , uniform field of viewCANGAROO, H.E.S.S., VERITAS ~0.16° uniformMAGIC 0.1° in central part, 0.2° outsidePro small pixels:PerformanceCon:Cost

Electronics in camera (H.E.S.S.)

- Pro: Speed, minimizes connections, components
- Con: Access, flexibility, upgrade options

Optical links for transmission of PMT signals (MAGIC)

- Pro: Performance, weight
- Con: Cost, complexity

Recording of signal shape (MAGIC 300 MHz, VERITAS 500 MHz)
Pro: (Slight?) performance gain
Con: Cost, data rate & data storage
(H.E.S.S. ARS analog 1 GHz sampler, only sum read out)

Triggering Imaging Cherenkov telescopes

Skip topic

Coincidence of any 2 of 271 pixels

Coincidence of any 2 neighbor pixels

Coincidence of any 2 telescopes

H.E.S.S. Trigger scheme

n = 3,4,5... pixels within an 8x8 pixel "sector" above a certain threshold (3...6 photoelectr.)

Coincidence window ~1.5 ns; low random rates

Single-telescope rates

Gamma (Crab)~ 1 HzCR~ 1000 HzElectrons~ 2 HzMuons~ 100 HzNSBfew Hz

Detection probability

Threshold region

High-energy region

Data analysis techniques

Images

Usually shown

Threshold, ~ 50 p.e.

Cviewer

Typical, ~ 100 p.e.

Alt 79.0 Don/off 0.05 Tel 3 p/u/s 271 264 53 d Amp/size 173 120 Scw

Cviewer

 Alt
 78.9 Don/off
 0.09
 1.08 Msw
 0.93

 Tel 5 p/u/s
 271 268
 70 dtc
 73

 Amp/size
 68
 49 Scw
 1.13

Cosmic-ray rejection using shape parameters

Simple cuts and "Supercuts"

Scaled width

Improved techniques for cosmic ray rejection

Using shape parameters

- Alternative shape parameters
- Multidimensional probability distribution for parameters
- Kernel analysis
- Neural networks fed with image parameters ...

Using the full pixel information

- Image fits using shower templates
- Fits of transverse shape of image
- Neural networks fed with pixel data
- Fluctuation analysis
- Fractal parameters...

Using

- Pixel timing
- Polarization
- UV content ...

No "killer application" yet ...

most variants are at most 20-30% better than Hillas parameters and much more complicated and sensitive to instrumental effects

Single-telescope analysis

Key problem: Would like to know angular distance between shower image and source image ! (~ equivalent to shower impact distance) Use length of image, $L \sim \delta$ (and $\delta = d_{core}/h_{shower}$)

Reconstruction of shower direction

Method 1 (1-D) • Image axis • including uncertainties ...

Method 2 (2-D) • Use image shape to estimate δ

Error along shower axis $\sim 2 \text{ x}$ error perp. to axis

Method 3 (2-D) o Stereoscopic reconstruction using multiple views

The Crab Nebula with EGRET and HEGRA

HEGRA CT System at ~ 1 TeV

0.7 degr.

Single-telescope analysis

1-D analysis using image orientation

2-D reconstruction using image shape HEGRA CT3 Crab M. Ulrich et al. Astro-ph/9708003

CAT Mrk S. LeBohec et al. Astro-ph/9804133

0 40 41.5 41 40.5 40 400 39.5 300 39 200 38.5 100 38 16"44" RA 17"04 16"56" 16"52" 16"48"

Whipple Crab R. Lessard et al. Astro-ph/0005468

Ereignisse 200

400

300

200

100

0

0 10

20 30 40 50

70

80

Alpha (Grad)

60

Energy resolution

F. Piron, 2000

CAT telescope

Calibration and Flux Determination

Skip topic

Calibration

Issues

- Energy reconstruction / energy scale
- Effective area as a function of energy
- Cut efficiencies etc.

Problem: no test beam available

Energy calibration	Simulations	CR rate, spectrum	Muon rings	Calibration light source
Shower development	Model	(✓)	-	-
Generation of Ch. light	Model	\checkmark	\checkmark	-
Atmospheric transmission	Ext. input	\checkmark	(✓)	-
Optical eff. and. QE	Measurement	\checkmark	\checkmark	\checkmark
Electronics gain	Measurement	\checkmark	\checkmark	\checkmark
Problems	Accumulated uncertainties	1) Sim. of hadronic showers; 2) incident CR flux	Incomplete	Incomplete

Comparison of shower simulations

ALTAI, CORSIKA, KASKADE

Identical inputs (atmosphere etc.)

Worse disagreement for proton showers (20-30% or more)

Tricky: trigger simulation

Systematic errors

The Standard Candle: the Crab Nebula

Constant flux within errors on time scale between hours and

M. Amenomori et al. ICRC 2001

Observations at large zenith angles

Skip topic

Showers `at large ZE

- Larger light pool →
 larger eff. area
- Less intense light pool → higher threshold

HEGRA Data, F. Aharonian et al. Astropart. Phys. 10 (1999) 21

Effective area, threshold, sensitivity

A. Konopelko et al., J. Phys. G 25 (1999) 1989

D. Petry, VERITAS astro-ph/0108085

Images at large ZE

- Larger distance to shower → smaller images
- Need smaller pixels

- 3 TeV γ at 100 m core distance
- A. Konopelko et al., J. Phys. G 25 (1999) 1989

Physics from large-ZE observations

