Vacuum fluctuations
and Casimir force

First lecture :

from quantum fluctuations to modern quantum optics

Second lecture :

the Casimir force between two flat motionless mirrors invariance vs time and lateral space translations

Third lecture :

perturbations breaking these symmetries geometry and/or roughness of the plates motion of the plates – "fluctuations-dissipation" in vacuum – "dynamical Casimir effect" – generation of photons from motion in vacuum

A few references

- Reflection on moving mirrors as an analogy to gravitational perturbations of quantum vacuum
 - > B.S. de Witt, Phys. Rep. 19 (1975) 295
- Radiation from a perfect mirror moving in vacuum
 - S.A. Fulling & P.C.W. Davies, Proc. R. Soc. A348 (1976) 393
- Generation of photons inside a cavity built up with two perfect mirrors moving in vacuum
 - » G.T. Moore, J. Math. Phys. 11 (1970) 2879
- More references in
 - M.-T. Jaekel & S. Reynaud, Rep. Progr. Phys. 60 (1997) 863 = arXiv:quant-ph/9706035

Normal Casimir force and roughness• Real plates show
a rough surface• Roughness
correction to the
normal Casimir
force usually
calculated within
PFA• FA $\langle E(L + h_1(x, y) - h_2(x, y)) \rangle = E(L) + \frac{d^2E}{2 dL^2} \langle (h_1 - h_2)^2 \rangle$ • Small correction for roughness amplitudes ~1nm (fortunately)

Small scale rough	nness and short distance
ho = 0.4492 kL k ⁻¹ << L << λ_{p}	Small scale limit of the plasmon regime ; Maradudin & Mazur Phys. Rev. B (1980, 1981 (after a correction by a factor 2)
 Small scale roughness and long distances 	$\rho = \frac{14}{30\pi} k \lambda_{\rm P} ; k^{-1} << \lambda_{\rm P} << L$
> Limit of perfect m	irrors
$\lambda_{\mathrm{p}} \ll \mathrm{k}^{-1}, L$	Emig, Hanke, Golestanian, Kardar PRL (2001)
 In particular, perf mirrors with smal scale roughness 	1

M.-T. Jaekel & S. Reynaud, Rep. Progr. Phys. 60 (1997)

Even and odd modes

Parametric excitation of cavity resonances by motion

$$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ &$$

 $-a_2$

Orders of magnitudes

- Mechanical oscillation frequency $\Omega/2\pi \sim 10 \text{ GHz}$
- Supra-conducting cavity $F \sim 10^9$ at low temperature
- Mechanical parameters v/c~10⁻⁹
 - velocity v~30 cm/s
 - □ amplitude a~10⁻¹¹m
 - acceleration $\Omega v \sim 10^{10} \text{m/s}^2$
- □ Photons radiated outside the cavity *N*~10 photons/second
- Photons inside the cavity $N_{cav} \sim 1$

The perturbative approach used above breaks down when the accumulated phase velocity *Fv/c* approaches unity

Non perturbative calculations of phaseshifts

- Free fields decomposed over the two directions of propagation
- □ Scattering on the mirror
 - depends on the motion
- S-matrix describes reflection and transmission amplitudes

- This scattering relation contains
 - $\hfill\square$ ordinary phase shift experienced by the field for a mirror at rest
 - Doppler shift (change of frequency) for a mirror with a uniform velocity
 - full non perturbative phaseshift for an arbitrary motion q(t)

