the deep underground prototype for undersea and ice v detectors...

Capone Spiering Waxman

Proton Decay and Atmospheric Neutrino Oscillations:

Results from Super - K and Outlook for Future "Megaton" Detectors

L. R. Sulak Boston University

24 January 2002

Les Houches - Neutrino Particle Astrophysics - L. R. Sulak

1

broad brush, round-number overview... physics motivation proton decay theories severely constrained precision v oscillation measurements mass difference Δm^2 for $v_{\mu} \rightarrow v_{\tau}$ mixing angle θ_{23} search for CP violation sign of Δm^2 ...using matter interference synergism with superbeams, v factories

current status of Super - K

proton decay

atmospheric neutrino oscillations

our goals?

near, medium, long-term K2K/Minos, hot v beams and factories

comparison of future detector technologies

water Cherenkov liquid argon (balanced scintillator & Cherenkov oil?) where are we? where going?

Proton Decay Search, now

Current State...size is everything Super-K: 3.5 yr % 22 kT { 80 kT-yr IMB still best for most of ~40 modes SK PDK limits $e^+\pi^{\circ}$ 5 % 10³³, background 0.2 v K⁺ 1.6 % 10³³, background 2.2 with wide-open cuts for SK ...could soon be μ 5 x more restrictive K2K: probably no background to 10 yr % 0.5 MT IMB (1981-90) & SK: 10 yr realistic lifetime Near Term Program: Super-K (2003 to ~2007 with 1/2 pms) increase exposure ~2-fold statistically improve limits develop improved cuts and reconstruction for Hyper-K find 1 or 2 proton decay candidates invaluable guide to designing next detector determine mode to focus on define size of detector set technology study atmospheric v background to proton decay compare with events in near detector of K2K 2003 - 5: K2K long baseline study of v oscillations

where are we, where going? continued

Super - Kamiokande, longer term

Medium Term Goal

Super-K (between 2007 and ~2012) proton decay search with original pm density

μ 2007 JHF 1 superbeam for neutrino properties

Long Term Goal: New Megaton Detector

want significant increase of sensitivity x 10-20
sensitivity = mass x detection efficiency
need knowledge of neutrino interactions
minimize atmospheric background for linear gain
mode focus? K⁺ detection could drive technology

Long Term Detector Technology?

 0.5 - 2 MT water Cherenkov UNO / Hyper-K for JHF 2, μ 2012 4MW superbeam Titanic - sunken, water/pm-filled tanker

Suzuki

2) liquid argon LANNDD

3) detector with balanced scintillator / Cherenkov oil Svoboda what are the options?

New Detector Technology: water

water Cherenkov - low cost/MT

underground

Super-K 50 kT total, 22 kT fiducial → Hyper-K / UNO...2-3 x 100kT

no scale-up of Super-K...just repeat array of 10-20 ~ Super-K tanks

does cavern size set ultimate limit?

undersea

embedded, fine grain in Antares, Nestor piggy back on infrastructure 10 GeV threshold veto sufficient? deployment inside existing array feasible? submerged vessel, *e.g.* Titanic no excavation: avoid dominant time and cost no bioluminescence, sea currents movement raise to surface for maintenance >100m must use pressure-tolerant enclosures under-ice Amanda

50 GeV threshold? diffuse light? spacing?

what are the options, continued?

New Detector Technology: Scintillator

liquid scintillator...2 options as water substitute for $pv \rightarrow K^+$

 high light yield, *e.g.* Kamland *or*,
 doping balanced: *e.g.* LSND / Miniboone 2003

 a) isotropic scintillator for calorimetry and timing signature of K⁺
 b) but dilute, Cherenkov not overwhelmed for ring imaging and directionality

v K⁺ detection efficiency $10\% \rightarrow 40\%$ but potential problem: μ/e discrimination degraded?

tech information to come from Miniboone e. g. electron π^{o} discrimination

what if SUSY discovered? what if Super-K gets 1 or 2 candidates for v K⁺ ? should we fill S-K with dilute scintillator?

MegaTon project: \$1B/MT oil...show stopper?

what are the options, continued?

New Detector Technology: Liquid Argon

liquid argon time projection chamber - Icarus

everything charged visible...3 x 3 x 0.6 mm pixels

1/2 of 600T studied at surface...moving to1.5 m drift, achieving 1.8 ms lifetime(vs. 30 ms needed for scaling up)

+ 2 x 1200T = 3 kT proposed for 2005 in Gran Sasso safety under consideration

technical evaluation awaited see muon decay pix reconstruction of stopping muons and decay: vertices of end of muon and beginning of e dE/dx vs. range for stopping muons cross-check with multiple scattering electron energy distribution...Curie Plot

LANNDD 70 kT

~6 x better efficiency than water for K⁺ (but not for $e^+ \pi^{0}$) $\Rightarrow 420 \text{ kT}$ effective (8 x Super-K total) moderate cost: \$200 M for the liquid proposal sites: Frejus & WIPP, New Mexico

New Detector TechnologySummary

Reach	4x better than Super-K		10 ³⁵ years		
Technology	Strong Scintillation	Scintillator balanced w/ Cherenkov	Liquid Argon	Water Cherenkov underground	Water Cherenkov in sea
Current detector	Kamland 1KT	LSND	Icarus 0.3kT	Super-K 50KT	
Proposal detector		Miniboone	lanndd 70kT	Hyper-K and UNO	Titanic
Scale Factor	500	5000	~200	(x7 IMB δSK) 10 - 20	8
v K+ Detection Efficiency	0.5	0.5	1.0	0.15	0.15
Cost	High	High	Medium	Excavation: Time & \$?
Pros	calorimetry on all charged particles	Directionality	Superb detail; 6x better for vK ⁺	Mature technology, going since 1981	get > $2MT$ reach atm v e ⁺ π^{o} limit?
Cons	Single Goal v K ⁺ no direction	Single Goal ν K ⁺ μ/ e id	Safety cost to be proven	Limited by cavern size Magnetic Field?	Unknown technology, pm pressure

summary...

physics motivation strong for PDK search

theories severely constrained synergism with superbeams, *v* factories

next goals

detailed understanding of neutrino bkgnd vigorous r & d for detector options ...decision only after questions answered if $e^+ \pi^0$ 1 candidate, oil in Super-K? then big water detector? if SUSY, look for K⁺ economy determines detector K2K precision studies of v oscillations

Next generation detectors

water Cherenkov to largest size limited by ultimate atmospheric v background far detector for superbeams

liquid argon, if scalable a factor of 200, highest resolution study of all PDK modes possible Frejus detector for v oscillations