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Abstract

The precision data onZ boson decays from LEP-I and SLC colliders are compared with the
predictions based on the minimal standard theory. The Born approximation of the theory is
based on three most accurately known observables:Gµ—the four fermion coupling constant
of muon decay,mZ—the mass of theZ boson, andα(mZ)—the value of the ‘running fine
structure constant’ at the scale ofmZ . The electroweak loop corrections are expressed, in
addition, in terms of the masses of higgs,mH , of the top and bottom quarks,mt andmb, and
of the strong interaction constantαs(mZ). The main emphasis of the review is focused on
the one-electroweak-loop approximation. Two electroweak loops have been calculated in the
literature only partly. Possible manifestations of new physics are briefly discussed.
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1. Introduction

TheZ boson, the electrically neutral vector boson (its spin equals one) with massmZ ' 91 GeV
and width0Z ' 2.5 GeV†, occupies a unique place in physics. This heavy analogue of the
photon was experimentally discovered in 1983, practically simultaneously with its charged
counterparts, theW± bosons with massmW ' 80 GeV and width0W ' 2 GeV [1].

The discovery was crowned with Nobel prizes to Carlo Rubbia (for the bosons) and to
Simon van der Meer (for the CERN proton–antiproton collider, which was specially constructed
to produceW andZ bosons) [2].

The extremely short-lived vector bosons (τ = 1/0 ' 10−25 s) were detected by their
decays into various leptons and hadrons. The detectors in which these decay products were
observed, were built and operated by collaborations of physicists andengineers: the largest in
the history of physics.

The discovery ofW andZ bosons was a great triumph of experimental physics, but even
more so of theoretical physics. The masses and widths of the particles, the cross sections of
their production turned out to be in perfect agreement with the predictions of electroweak theory
of Sheldon Glashow, Abdus Salam and Steven Weinberg [3]. The theory was so beautiful that
its authors received the Nobel prize in 1979 [4], four years before its crucial confirmation.

The electroweak theory unified two types of fundamental interactions: electromagnetic
and weak. The theory of electromagnetic interaction—quantum electrodynamics (QED)—was
cast in its present relativistically covariant form in the late 1940s and early 1950s and served
as a ‘role model’ for the relativistic field theories of two other fundamental interactions: weak
and strong.

The main virtue of QED was its renormalizability. Let us explain this ‘technical’ term
by using the example of interaction of photons with electrons. One can find a systematic
presentation in modern textbooks [5]. In the lowest approximation of perturbation theory
(the so-called tree approximation in the language of Feynman diagrams) all electromagnetic
phenomena can be described in terms of electric charge and mass of the electron (e, m). The
small parameter of perturbation theory is the well knownα = e2/4π ' 1

137.
The problem with any quantum field theory is that in higher orders of perturbation theory,

described by Feynman graphs with loops, the integrals over momenta of virtual particles have
ultraviolet divergences, so that all physical quantities including the electric charge and mass
of the electron themselves become infinitely large. To avoid infinities an ultraviolet cut-off3

could be introduced. Another, more sophisticated method is to use dimensional regularization:
to calculate the Feynman integrals in momentum space ofD dimensions. These integrals
diverge atD = 4, but are finite, proportional to 1/ε in the vicinity of D = 4, where by
definition 2ε = 4− D→ 0 (see appendix A).

The theory is called renormalizable if one can get rid of this cut-off (or 1/ε) by establishing
relations between observables only. In the case of electrons and photons, such basic observables
are physical (renormalized) charge and mass of the electron. This allows one to calculate
higher-order effects inα and compare the theoretical predictions with the results of high-
precision measurements of such observables as, e.g., anomalous magnetic moments of electron
or muon.

The renormalizability of electrodynamics is guaranteed by the dimensionless nature of
the coupling constantα and by conservation of electric current.

After this short description of QED let us turn to the weak interaction.
The first manifestation of the weak interaction was discovered by Henri Becquerel at the

† Throughout the paper we use units in which ¯h, c = 1.
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end of the 19th century. Later, this type of radioactivity was calledβ-decay. The first theory of
β-decay was proposed by Enrico Fermi in 1934 [6]. The theory was modelled after quantum
electrodynamics with two major differences: first, instead of charge conserving, ‘neutral’,
electrical current of the type−ēγαe + p̄γα p there were introduced two charge changing,
‘charged’, vector currents: one for nucleons, transforming neutron into a proton,p̄γαn, another
for leptons, transforming neutrino into electron or creating a pair: electron plus antineutrino,
ēγαν. (Hereē(e)denotes operator, which creates (annihilates) electron and annihilates (creates)
positron. The symbols of other particles have similar meaning;γα are four Dirac matrices,
α = 0,1,2,3.)

The second difference between the Fermi theory and electrodynamics was that the charged
currents interacted locally via four-fermion interaction:

G · p̄γαn · ēγαν + h.c., (1)

where summation over indexα is implied (in this summation we use Feynman’s convention: +
for α = 0 and− for α = 1,2,3); h.c. stands for Hermitian conjugate. The coupling constant
G of this interaction is called the Fermi coupling constant.

From simple dimensional considerations it is evident that the dimension ofG is (mass)−2

and therefore the four-fermion interaction is not renormalizable, the higher orders being
divergent asG232, G334, . . . . Why these divergent corrections still allow one to rely on
the lowest order approximation remained a mystery. But for many years the lowest order
four-fermion interaction served as a successful phenomenological theory of weak interactions.

It is in the framework of this phenomenological theory that a number of subsequent
experimental discoveries were accommodated. First, it turned out thatβ-decay is one of the
large family of weak processes, involving newly discovered particles, such as pions, muons
and muonic neutrinos, strange particles, etc. Second, it was discovered that all these processes
are caused by the self-interaction of one weak charged current, involving leptonic and hadronic
terms. Later on, when the quark structure of hadrons was established, the hadronic part of the
current was expressed through the corresponding quark current. Third, it was established in
1957 that all weak interactions violate parity conservationP and charge conjugation invariance
C. This violation turned out to have a universal pattern: the vector form of the currentV ,
introduced by Fermi, was substituted [7] by one-half of the sum of vector and axial vector,A,
which meant thatγα should be substituted by12γα(1 +γ5).

In other words, one can say that fermionψ enters the charged current only through its
left-handed chiral component

ψL = 1
2(1 +γ5)ψ. (2)

From such a structure of the charged current it follows that the corresponding antifermions
interact only through their right-handed components.

Attempts to construct a renormalizable theory of weak interaction resulted in a unified
theory of electromagnetic and weak interactions—the electroweak theory [3,4], with two major
predictions. The first prediction was the existence alongside the charged weak current of a
neutral weak current. The second prediction was the existence of the vector bosons:Z coupled
to the weak neutral current andW+ andW− coupled to the charged current (as1

2ēγα(1 +γ5)ν)
and its Hermitian conjugate current (as1

2 ν̄γα(1 +γ5)e).
The vector bosons were massive analogues of the photonγ ; their couplings to the

corresponding currents,f andg, were the analogues of the electric chargee. ThusαZ = f 2/4π
and αW = g2/4π were dimensionless likeα = e2/4π , which was a necessary (but not
sufficient) condition of renormalizability of the weak interaction.

The first theory, involving charged vector bosons and photon, was proposed by Oscar Klein
just before World War II [8]. Klein based his theory on the notion of local isotopic symmetry:
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he considered isotopic doublets(p,n) and(ν,e), and the isotopic triplet(B+, A0, B−). B±

denoted what we now callW±, while A0 was the electromagnetic field. He also mentioned
the possibility of incorporating a neutral massive fieldC0 (the analogue of ourZ0). In fact this
was the first attempt to construct a theory based on a non-Abelian gauge symmetry, with vector
fields playing the role of gauge fields. The gauge symmetry was essential for conservation of
the currents. Unfortunately, Klein did not discriminate between weak and strong interaction
and his paper was firmly forgotten.

The non-Abelian gauge theory was rediscovered in 1954 by C N Yang and RMills [9] and
became the basis of the so-called standard model (SM) with its colourSU(3)c group for strong
interaction of quarks and gluons andSU(2)L ×U (1)Y group for electroweak interaction (here
indices denote:c, colour,L, weak isospin of left-handed spinors andY, the weak hypercharge).
The electric chargeQ = T3 + Y/2, whereT3 is the third projection of isospin.Y = 1

3 for a
doublet of quarks,Y = −1 for a doublet of leptons. As for the right-handed spinors, they are
isosinglets, and hence

Y(νR) = 0, Y(eR) = −2, Y(uR) = 4
3, Y(dR) = − 2

3.

Thus, parity violation and charge conjugation violation were incorporated into the foundation
of electroweak theory.

Out of the four fields (three ofSU(2) and one ofU (1), usually denoted byW+,W0,W−

and B0, respectively) only two directly correspond to the observed vector bosons:W+ and
W−. The Z0 boson and photon are represented by two orthogonal superpositions ofW0 and
B0:

Z0 = cW0− sB0

A0 = sW0 + cB0,
(3)

wherec = cosθ , s= sinθ , while the weak angleθ is a free parameter of electroweak theory.
The value ofθ is determined from experimental data onZ boson coupling to neutral current.
The ‘Z-charge’, characterizing the coupling of theZ boson to a spinor with definite helicity
is given by

f̄ (T3− Qs2), (4)

where†

f̄ = ḡ/c. (5)

Note that the ‘Z-charge’ is different for the right- and left-handed spinors with the same
value of Q because they have different values ofT3. The coupling constant ofW bosons is
also expressed in terms ofē andθ :

ḡ = ē/s. (6)

The theory described above has many nice features, the most important of which is its
renormalizability. But at first sight it looks absolutely useless: all fermions and bosons in it are
massless. This drawback cannot be fixed by simply adding mass terms to the Lagrangian. The
mass terms of fermions would contain bothψL andψR and thus explicitly break the isotopic
invariance and hence renormalizability. The gauge invariance would also be broken by the
mass terms of the vector bosons. All this would result in divergences of the type32/m2,
34/m4, etc.

The way out of this trap is the so-called Higgs mechanism [10]. In the framework of the
minimal standard model (MSM) the problem of mass is solved by postulating the existence

† We denote bȳe, f̄ , ḡ the values of the corresponding charges atmZ scale, whilee, f , g refer to values at vanishing
momentum transfer. The same applies toᾱ, ᾱZ , ᾱW andα, αZ , αW (see equations (13)–(18)).
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Figure 1. Muon decay in the tree approximation.

of the doubletϕH = (ϕ+, ϕ0) and corresponding antidoublet(ϕ̄0,−ϕ−) of spinless particles.
These four bosons differ from all other particles by the form of their self-interaction, the
energy of which is minimal when the neutral fieldϕ1 = 1√

2
(ϕ0 + ϕ̄0) has a nonvanishing

vacuum expectation value. The isospin of the Higgs doublet is1
2, its hypercharge is 1. Thus, it

interacts with all four gauge bosons. In particular, it has quartic terms1
4 ḡ2W̄ Wϕ2

1, 1
8 f̄ 2Z̄ Zϕ2

1,
which give masses to the vector bosons whenϕ1 acquires its vacuum expectation value (VEV)
η:

mW = ḡη/2, mZ = f̄ η/2. (7)

The magnitude ofη can easily be derived from that of the four-fermion interaction constant
Gµ in muon decay:

Gµ√
2
· ν̄µγα(1 +γ5)µ · ēγα(1 +γ5)νe. (8)

In the Born approximation of electroweak theory this four-fermion interaction is caused by an
exchange of a virtualW boson (see figure 1). Hence†

Gµ√
2
= g2

8m2
W

= ḡ2

8m2
W

, η = (
√

2Gµ)
−1/2 = 246 GeV. (9)

Such mechanism of appearance of masses ofW and Z bosons is called spontaneous
symmetry breaking. It preserves renormalizability [11]. (As a hint, one can use the symmetrical
form of Lagrangian by not specifying the VEVη.)

The fermion masses can be introduced also without explicitly breaking the gauge
symmetry. In this case the mass arises from an isotopically invariant termfY ·ϕH ψ̄LψR + h.c.,
where fY is called the Yukawa coupling. The mass of a fermionm = fYη/

√
2. There is a

separate Yukawa coupling for each of the known fermions. Their largely varying values are at
present free parameters of the theory and await further understanding of this hierarchy.

Let us return for a moment to the vector bosons. A massless vector boson (e.g. photon)
has two spin degrees of freedom—two helicity states. A massive vector boson has three
spin degrees of freedom corresponding, say to projections±1,0 on its momentum. Under
spontaneous symmetry breaking three out of four spinless states,ϕ±, ϕ0

2 = 1√
2
(ϕ0 − ϕ̄0)

become third components of the massive vector bosons. Thus, in the MSM there must exist
only one extra particle: a neutral Higgs scalar boson, or simply, higgs‡, representing a quantum
of excitation of fieldϕ0

1 over its VEVη. The discovery of this particle is crucial for testing the
correctness of MSM.

† For more on electroweak Born approximation, for which equalityg = ḡ holds, see equations (14)–(25).
‡ Throughout this review we consistently use capital ‘H’ in such terms as ‘Higgs mechanism’, ‘Higgs boson’, ‘Higgs
doublet’, but the lower case of ‘higgs’ is used as a name of the particle, not the man.
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Figure 2. The Z boson as a resonance ine+e− annihilations.

The first successful test of electroweak theory was provided by the discovery of neutral
currents in the interaction of neutrinos with nucleons [12]. Further study of this deep inelastic
scattering (DIS) allowed to extract the rough value of the sinθ : s2 ' 0.23 and thus to predict
the values ofmW ' 80 GeV andmZ ' 90 GeV, which served as leading lights for the discovery
of these particles.

A few other neutral current interactions have been discovered and studied: neutrino–
electron scattering [13], parity violating electron–nucleon scattering at high energies [14] and
parity violation in atoms [15]. All of them turned out to be in agreement with electroweak
theory. A major part of the theoretical work on electroweak corrections prior to the discovery
of theW andZ bosons was devoted to calculating the neutrino–electron [16] (and especially
nucleon–electron [17]) interaction cross sections.

After the discovery of theW andZ bosons it became evident that the next level in the study
of electroweak physics must consist of precision measurements of production and decays of
Z bosons in order to test the electroweak radiative correction. For such measurements, special
electron–positron colliders SLC (at SLAC) and LEP-I (at CERN) were constructed and started
to operate in the fall of 1989. SLC had one intersection point of colliding beams and hence
one detector (SLD); LEP-I had four intersection points and four detectors: ALEPH, DELPHI,
L3 and OPAL.

In connection with the construction of LEP and SLC, a number of teams of theorists
carried out detailed calculations of the required radiative corrections. These calculations were
discussed and compared at special workshops and meetings. The result of this work was the
publication of two so-called ‘CERN yellow reports’ [18,19], which, together with the yellow
report [20], became the ‘must’ books for experimentalists and theoreticians studying theZ
boson. The book [21] (which should be published in 1999) summarizes results of theoretical
studies.

More than 2000 experimentalists and engineers and hundreds of theorists participated in
this unique collective quest for truth!

The sum of energies ofe+ + e− was chosen to be equal to theZ boson mass. LEP-I was
terminated in the fall of 1995 in order to give place to LEP-II, which will operate in the same
tunnel till 2001 with maximal energy 200 GeV. SLC continued at energy close to 91 GeV.

The reactions which have been studied at LEP-I and SLC may be presented in the form
(see figure 2):

e+e− → Z→ f f̄ , (10)

where

f f̄ = νν̄(νeν̄e, νµν̄µ, ντ ν̄τ ) invisible,
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l l̄ (eē, µµ̄, τ τ̄ ) charged leptons,

qq̄(uū,dd̄, ss̄, cc̄,bb̄) hadrons.

About 20 000 000Z bosons have been detected at LEP-I and 550 000 at SLC (but here
electrons are polarized, which compensates for the lower number of events).

Experimental data from all five detectors were summarized and analysed by the LEP
Electroweak Working Group and the SLD Heavy Flavour and Electroweak Groups which
prepared a special report ‘A combination of preliminary electroweak measurements and
constraints on the standard model’ [22]. These data were analysed in [22] by usingZFITTER
code (see section 6.1) and independently by J Erler and P Langacker [23].

Fantastic precision has been reached in the measurement of theZ boson mass and
width [22]:

mZ = 91 186.7(2.1) MeV, 0Z = 2493.9± 2.4 MeV. (11)

Of special interest is the measurement of the width of invisible decays ofZ:

0invisible= 500.1± 1.9MeV. (12)

By comparing this number with theoretical predictions for neutrino decays it was established
that the number of neutrinos which interact with theZ boson is three (Nν = 2.994± 0.011).
This is a result of fundamental importance. It means that there exist only three standard families
(or generations) of leptons and quarks†. Extra families (if they exist) must have either very
heavy neutrinos (mN > mZ/2), or no neutrinos at all.

This review is devoted to the description of the theory of electroweak radiative corrections
in Z boson decays and to their comparison with experimental data [22]. Our approach to the
theory of electroweak corrections differs somewhat from that used in [18–23]. We believe that
it is simpler and more transparent (see section 6.1). In section 2 we introduce the basic input
parameters of the electroweak Born approximation. In section 3 we present phenomenological
formulae for amplitudes, decay widths, and asymmetries of the numerous decay channels of
Z bosons. The main subject of our review is the calculation of one-electroweak loop radiative
corrections to the Born approximation. In section 4 they are calculated to the hadronless
decays and the mass of theW boson, while in section 5—to the hadronic decays. In section 6
the results of the one-electroweak loop calculations are compared with the experimental data.
Section 7 gives a sketch of two-electroweak loop corrections and of their influence on the
fit of experimental data. Section 8 discusses possible manifestations of new physics (extra
generations of fermions and supersymmetry). Section 9 contains conclusions.

In order to make the reading of the main text easier, technical details and derivations are
collected in the appendices.

2. Basic parameters of the theory

The first step in the theoretical analysis is to separate genuinely electroweak effects from purely
electromagnetic ones, such as real photons emitted by initial and final particles in reaction (10)
and virtual photons emitted and absorbed by them. The electroweak quantities extracted in
this way are called sometimes [20] pseudo-observables, but for the sake of brevity we will
refer to them as observables.

A key role among purely electromagnetic effects is played by a phenomenon which is
called the running of electromagnetic coupling ‘constant’α(q2). The dependence of the electric

† Combining equation (12) with the data onνµe− [24] andνee− [25] scattering allowed it to be established thatνe,
νµ andντ have equal values of couplings with theZ boson [26].
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Figure 3. Photon polarization of the vacuum, resulting in the logarithmic running of the

electromagnetic chargee and the ‘fine structure constant’α ≡ e2

4π , as a function ofq2, where
q is the 4-momentum of the photon (a). Some of the diagrams that contribute to the self-energy
of the W boson (b)–(g). Some of the diagrams that contribute to the self-energy of theZ boson
(h)–(n). Some of the diagrams that contribute to theZ ↔ γ transition (o)–(r).

charge on the square of the four-momentum transferq2 is caused by the photon polarization
of vacuum, i.e. by loops of charged leptons and quarks (hadrons) (see figure 3(a)).

As is well known (see e.g. [27])

α ≡ α(q2 = 0) = [137.035 985(61)]−1. (13)

It has a very high accuracy and is very important in the theory of electromagnetic processes
at low energies. As for electroweak processes in general andZ decays in particular, they are
determined by [22]

ᾱ ≡ α(q2 = m2
Z) = [128.878(90)]−1, (14)
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the accuracy of which is much worse.
It is convenient to denote

ᾱ = α

1− δα , (15)

where

δα = δαl + δαh = 0.0314 98(0) + 0.059 40(66) (16)

(for the value ofδαl see [28], while for the value ofδαh see [29]).
It is obvious that the uncertainty ofδα and hence of̄α stems from that of hadronic

contributionδαh.
While α(q2) is running electromagnetically fast,αZ(q2) and αW(q2) are ‘crawling’

electroweakly slow forq2 . m2
Z :

αZ ≡ αZ(0) = 1
23.10, ᾱZ ≡ αZ(m

2
Z) = 1

22.91 (17)

αW ≡ αW(0) = 1
29.01, ᾱW ≡ αW(m

2
Z) = 1

28.74. (18)

The small differencesαZ − ᾱZ and αW − ᾱW are caused by electroweak radiative
corrections. Therefore one could and should neglect them when defining the electroweak
Born approximation. (We used this recipe (g = ḡ) when deriving the relation (9) betweenGµ

andη.)
The theoretical analysis of electroweak effects in this report is based on the three most

accurately known parameters:Gµ, ᾱ (equation (14)) andmZ (equation (11)).

Gµ = 1.166 39(1)× 10−5 GeV−2. (19)

This value ofGµ [27] is extracted from the muon lifetime after taking into account the
purely electromagnetic corrections (including bremsstrahlung) and kinematical factors [31]:

1

τµ
≡ 0µ =

G2
µm5

µ

192π3
f

(
m2

e

m2
µ

)[
1− α(mµ)

2π

(
π2− 25

4

)]
, (20)

where

f (x) = 1− 8x + 8x3− x4− 12x2 logx,

and

α(mµ)
−1 = α−1− 2

3π
log

(
mµ

me

)
+

1

6π
≈ 136.

Now we are ready to express the weak angleθ in terms ofGµ, ᾱ andmZ . Starting from
equations (9), (5) and (6), we get in the electroweak Born approximation:

Gµ = ḡ2

4
√

2m2
W

= f̄ 2

4
√

2m2
Z

= πᾱ√
2m2

Zs2c2
(21)

from which

f̄ 2 = 4
√

2Gµm2
Z = 0.548 63(3),

f̄ = 0.740 70(2)
(22)

sin2 2θ = 4πᾱ/
√

2Gµm2
Z = 0.710 90(50), (23)

s2 = 0.231 16(23), (24)

c = 0.876 83(13). (25)

The angleθ was introduced in the mid-1980s [32]. However, its consistent use began only
in the 1990s [33]. Usingθ automatically takes into account the running ofα(q2) and makes it
possible to concentrate on genuinely electroweak corrections as will be demonstrated below.

Author Query
ok to set above fractions as case fractions?
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(In this review we consistently usemZ as defined by EWWG in accord with our
equation (D.7). Note that a different definition of theZ boson massmZ is known in the
literature, related to a different parametrization of the shape of theZ boson peak [34].)

The introduction of the Born approximation described above differs from the traditional
approach in which̄α − α is treated as the largest electroweak correction, massesmW andmZ

are handled on an equal footing, and the angleθW, defined by

cW ≡ cosθW = mW/mZ, s2
W = 1− c2

W, (26)

is considered as one of the basic parameters of the theory. (Note that the experimental accuracy
of θW is much worse than that ofθ .)

After discussing our approach and its main parameters we are prepared to consider various
decays ofZ bosons.

3. Amplitudes, widths and asymmetries

Phenomenologically, the amplitude of theZ boson decay into a fermion-antifermion pairf f̄
can be presented in the form:

M(Z→ f f̄ ) = 1
2 f̄ ψ̄ f (gV f γα + gA f γαγ5)ψ f Zα, (27)

where coefficientf̄ is given by equation (22)†. In the case of neutrino decay channel there is
no final state interaction or bremsstrahlung. Therefore, the width into any pair of neutrinos is
given by

0ν ≡ 0(Z→ νν̄) = 400(g
2
Aν + g2

Vν) = 800g2
ν , (28)

where neutrino masses are assumed to be negligible, and00 is the so-called standard width:

00 = f̄ 2mZ

192π
= Gµm3

Z

24
√

2π
= 82.940(6) MeV. (29)

For decays to any of the pairs of charged leptonsl l̄ we have:

0l ≡ 0(Z→ l l̄ ) = 400

[
g2

Vl

(
1 +

3ᾱ

4π

)
+ g2

Al

(
1 +

3ᾱ

4π
− 6

m2
l

m2
Z

)]
. (30)

The QED ‘radiator’ (1+3̄α/4π ) is due to bremsstrahlung of real photons and emission and
absorption of virtual photons byl andl̄ . Note that it is expressed not throughα, but throughᾱ.

For the decays to any of the five pairs of quarksqq̄ we have

0q ≡ 0(Z→ qq̄) = 1200[g2
AqRAq + g2

V qRV q]. (31)

Here an extra factor of three in comparison with leptons takes into account the three colours
of each quark. The radiatorsRAq and RV q contain contributions from the final state gluons
and photons. In the crudest approximation

RV q = RAq = 1 +
α̂s

π
, (32)

whereαs(q2) is the QCD running coupling constant:

α̂s ≡ αs(q
2 = m2

Z) ' 0.12. (33)

(For additional details on̂αs and radiators see appendix E.)

† Z boson couplings are diagonal in flavour unlike those of theW boson, where the Cabibbo–Kobayashi–Maskawa
mixing matrix [35] should be accounted for in the case of couplings with quarks.
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The full hadron width (to the accuracy of very small corrections, see sections 5 and 7) is
the sum of widths of five quark channels:

0h = 0u + 0d + 0s + 0c + 0b. (34)

The total width of theZ boson:

0Z = 0h + 0e + 0µ + 0τ + 30ν. (35)

The cross section of annihilation ofe+e− into hadrons at theZ peak is given by the
Breit–Wigner formula

σh = 12π

m2
Z

0e0h

02
Z

. (36)

Finally the following notations for the ratio of partial widths are widely used:

Rb = 0b

0h
, Rc = 0c

0h
, Rl = 0h

0l
. (37)

(Note that0l in the numerator ofRl refers to a single charged lepton channel, whose lepton
mass is neglected.)

Parity violating interference ofgA f and gV f leads to a number of effects: forward–
backward asymmetriesAFB, longitudinal polarization ofτ -leptonPτ , dependence of the total
cross section atZ peak on the longitudinal polarization of the initial electron beamAL R, etc.
Let us define for the channels of charged lepton and light quark (u,d, s, c) whose mass may
be neglected the quantity

A f = 2gA f gV f

g2
A f + g2

V f

. (38)

For f = b:

Ab = 2gAbgV b

v2
bg2

Ab + (3− v2
b)g

2
V b/2

, (39)

wherevb is the velocity of theb quark:

vb =
√

1− 4m̂2
b

m2
Z

. (40)

Herem̂b is the value of the running mass of theb-quark at scalemZ calculated inMS
scheme [36].

The forward–backward charge asymmetry in the decay tof f̄ equals:

A f
FB =

NF − NB

NF + NB
= 3

4
AeAf , (41)

whereNF (NB) is the number of events withf going into the forward (backward) hemisphere;
Ae refers to the creation ofZ boson ine+e− annihilation, whileAf refers to its decay inf f̄ .

The longitudinal polarization of theτ -lepton in the decayZ → τ τ̄ is Pτ = −Aτ . If,
however, the polarization is measured as a function of the angleθ between the momentum of
a τ− and the direction of the electron beam, this allows the determination of not onlyAτ , but
Ae as well:

Pτ (cosθ) = − Aτ (1 + cos2 θ) + 2Ae cosθ

1 + cos2 θ + 2Aτ Ae
. (42)

The polarizationPτ is found fromPτ (cosθ) by separately integrating the numerator and
the denominator in equation (42) over the total solid angle.
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Table 1.

Observable Experiment Born Pull

mW (GeV) 80.390(64) 79.956(12) 6.8
mW/mZ 0.8816(7) 0.8768(1) 6.8
s2
W 0.2228(12) 0.2312(2)−6.8
0l (MeV) 83.90(10) 83.57(1) 3.3
gAl −0.5010(3) −0.5000(0) −3.3
gVl/gAl 0.0749(9) 0.0754(9)−0.5
s2
l 0.2313(2) 0.2312(2) 0.5

The relative difference between total cross section at theZ-peak for the left- and right-
polarized electrons that collide with non-polarized positrons (measured at the SLC collider)
is

AL R ≡ σL − σR

σL + σR
= Ae. (43)

The measurement of parity violating effects allows one to determine experimentally the ratios
gV f /gA f , while the measurements of leptonic and hadronic widths allow to findgA f andα̂s.

Table 1 compares the experimental and the Born values of the so-called ‘hadronless’
observablesmW, gAl and gVl . For the reader’s convenience the table lists different
representations of the same observable known in the literature:

s2
W = 1− m2

W

m2
Z

, (44)

s2
l ≡ s2

ef f ≡ sin2 θ
lept
e f f ≡

1

4

(
1− gVl

gAl

)
. (45)

The experimental values in the table are taken from [22], assuming that lepton universality
holds. The pull shown in the last column is obtained by dividing the difference ‘Exp− Born’
by experimental uncertainty (shown in brackets). One can see that the discrepancy between
experimental data and Born values are very large formW and substantial forgAl . That means
that electroweak radiative corrections are essential. As forgVl/gAl , its experimental and Born
values coincide. Moreover the theoretical uncertainty is the same as the experimental one;
thus the pull is practically vanishing. Such high experimental accuracy forgVl/gAl has been
achieved only recently. As formW and0l , their experimental uncertainties are much larger
than the theoretical ones.

We would like to mention that in 1991, when we published our first paper on electroweak
corrections toZ-decays, the LEP experimental data were in perfect agreement with the Born
predictions of table 1. This demonstrates the remarkable progress in experimental accuracy.

4. One-loop corrections to hadronless observables

4.1. Four types of Feynman diagrams

Four types of Feynman diagrams contribute to electroweak corrections for the observables of
interest to us here,mW/mZ, gAl , gVl/gAl :

(1) Self-energy loops forW and Z bosons with virtualν, l ,q, H,W and Z in loops (see
figures 3(b)–(n)).

(2) Loops of charged particles that result in transition of aZ boson into a virtual photon (see
figures 3(o)–(r)).

Author Query
no table caption ok?
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Figure 4. Vertex triangular diagrams in theZ → l l̄ decay (a)–(c). Loops that renormalize the
lepton wavefunctions in theZ → l l̄ decay (of course, the antilepton has similar loops) (d), (e).
Types of diagrams that renormalize theZ boson wavefunction in theZ → l l̄ decay (f ), (g). The
virtual particles in the loops are discussed in the text.

(3) Vertex triangles with virtual leptons and a virtualW or Z boson (see figures 4(a)–(c)).
(4) Electroweak corrections to lepton and Z boson wavefunctions (see figures 4(d)–(g)).

It must be emphasized thatZ boson self-energy loops contribute not only to the massmZ

and, consequently, to themW/mZ ratio but also to theZ boson decay tol l̄ , to which
Z ↔ γ transitions also contribute because these diagrams give corrections to theZ boson
wavefunction. Moreover, there is no simple one-to-one correspondence between Feynman
diagrams and amplitudes. This is caused by the choice ofGµ as an input observable which
enters the expression fors andc. As a result, e.g., there is a contribution tomW/mZ coming
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from the box and vertex diagrams in the one-loop amplitude of the muon decay. In a similar way
the self-energy of theW boson enters the amplitudes for decayZ→ l l̄ : see also appendix D.

Obviously, electroweak corrections tomW/mZ, gAl andgVl/gAl are dimensionless and
thus can be expressed in terms ofᾱ, c, s and the dimensionless parameters

t =
(

mt

mZ

)2

, h =
(

mH

mZ

)2

, (46)

wheremt is the mass of thet quark andmH is the higgs mass. (Masses of leptons and all
quarks exceptt give only very small corrections.)

4.2. The asymptotic limit at m2t � m2
Z

Following papers by Veltman [37], it became clear that in the limitt � 1 electroweak radiative
corrections are dominated by terms proportional tot . These terms stem from the violation of
weak isotopic invariance by the large difference ofmt andmb (see figures 3(c), (i) and (j)).

After the discovery of the top quark it turned out that experimentallyt ' 3.7. As we shall
demonstrate in this review, for such a value oft the contributions of the terms which are not
enhanced by the factort are comparable to the enhanced ones. Still, it is convenient to split
the calculation of corrections into a number of stages and begin by calculating the asymptotic
limit for t � 1.

The main contribution comes from diagrams that containt and b quarks because the
large difference ofmt andmb strongly breaks isotopic invariance. A simple calculation (see
appendix D) gives the following result for the sum of the Born and one-loop terms:

mW/mZ = c +
3c

32πs2(c2− s2)
ᾱt, (47)

gAl = −1

2
− 3

64πs2c2
ᾱt, (48)

R≡ gVl/gAl = 1− 4s2 +
3

4π(c2− s2)
ᾱt, (49)

gν = 1

2
+

3

64πs2c2
ᾱt. (50)

The presence oft-enhanced terms in radiative corrections toZ boson decays allowed the
prediction of the mass of the top quark before its actual discovery [38,39].

4.3. The functions Vm(t, h), VA(t, h) and VR(t, h)

If we now switch from the asymptotic case oft � 1 to the realistic value oft , then one should
make the substitution in equations (47)–(50):

t → t + Ti (t), (51)

in which the indexi = m, A, R, ν denotesmW/mZ , gAl , R≡ gVl/gAl andgν , respectively.
The functionsTi are relatively simple combinations of algebraic and logarithmic functions.

Their numerical values for a range of values ofmt are given in table 2. The functionsTi (t)
thus describe the contribution of the quark doublett,b to mW/mZ , gA, R = gVl/gAl andgν .
If, however, we now take into account the contributions of the remaining virtual particles, then
the result can be given in the form

t → Vi (t, h) = t + Ti (t) + Hi (h) + Ci + δVi (t). (52)

HereHi (h) contain the contribution of the virtual vector and higgs bosonsW, Z andH and
are functions of the higgs massmH . (The mass of theW boson entersHi (h) via the parameter
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Table 2.

mt

(GeV) t Tm TA TR

120 1.732 0.323 0.465 0.111
130 2.032 0.418 0.470 0.154
140 2.357 0.503 0.473 0.193
150 2.706 0.579 0.476 0.228
160 3.079 0.649 0.478 0.261
170 3.476 0.713 0.480 0.291
180 3.896 0.772 0.481 0.319
190 4.341 0.828 0.483 0.345
200 4.810 0.880 0.484 0.370
210 5.303 0.929 0.485 0.393
220 5.821 0.975 0.485 0.415
230 6.362 1.019 0.486 0.436
240 6.927 1.061 0.487 0.456

Table 3.

mH

(GeV) h Hm HA HR

0.01 0.000 1.120−8.716 1.359
0.10 0.000 1.119−5.654 1.354
1.00 0.000 1.103−2.652 1.315

10.00 0.012 0.980−0.133 1.016
50.00 0.301 0.661 0.645 0.360

100.00 1.203 0.433 0.653−0.022
150.00 2.706 0.275 0.588−0.258
200.00 4.810 0.151 0.518−0.430
250.00 7.516 0.050 0.452−0.566
300.00 10.823−0.037 0.392−0.679
350.00 14.732−0.112 0.338−0.776
400.00 19.241−0.178 0.289−0.860
450.00 24.352−0.238 0.244−0.936
500.00 30.065−0.292 0.202−1.004
550.00 36.378−0.341 0.164−1.065
600.00 43.293−0.387 0.128−1.122
650.00 50.809−0.429 0.095−1.175
700.00 58.927−0.469 0.064−1.223
750.00 67.646−0.506 0.035−1.269
800.00 76.966−0.540 0.007−1.311
850.00 86.887−0.573 −0.019 −1.352
900.00 97.410−0.604 −0.044 −1.390
950.00 108.534−0.633 −0.067 −1.426

1000.00 120.259−0.661 −0.090 −1.460

c, defined by equation (25)). The explicit form of the functionsHi is given in [41, 42] and
their numerical values for various values ofmH are given in table 3.

The constantsCi in equation (52) include the contributions of light fermions to the self-
energy of theW andZ bosons, and also to the Feynman diagrams, describing the electroweak
corrections to the muon decay, as well as triangle diagrams, describing theZ boson decay.
The constantsCi are relatively complicated functions ofs2 (see [41, 42]). We list here their

Author Query
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Figure 5. Virtual t quarks (a) andW bosons (b), (c) in the photon polarization of the vacuum.

numerical values fors2 = 0.231 10− δs2:

Cm = −1.3497 + 4.13δs2, (53)

CA = −2.2621− 2.63δs2, (54)

CR = −3.5045− 5.72δs2, (55)

Cν = −1.1641− 4.88δs2. (56)

4.4. CorrectionsδVi (t)

Finally, the last term in equation (52) includes the sum of corrections of three different types.
Their common feature is that they do not contain more than one electroweak loop:

δVi = δ1Vi + δ2Vi + δ3Vi . (57)

(1) The correctionsδ1Vi are extremely small. They contain contributions of theW boson
and thet quark to the polarization of the electromagnetic vacuumδWα andδtα, which
traditionally are not included into the running ofα(q2), i.e. into ᾱ (see figure 5). It
is reasonable to treat them as electroweak corrections. This is especially true for the
W-loop that depends on the gauge chosen for the description of theW and Z bosons.
Only after this loop is taken into account do the resultant electroweak corrections become
gauge-invariant, as it should indeed be for physical observables. Here and hereafter in the
calculations the ’t Hooft–Feynman gauge is used:

δ1Vm(t, h) = −16

3
πs4 1

α
(δWα + δtα) = −0.055, (58)

δ1VR(t, h) = −16

3
πs2c2 1

α
(δWα + δtα) = −0.181, (59)

δ1VA(t, h) = δ1Vν(t, h) = 0, (60)

where

δWα = 0.000 50, (61)

δtα ' −0.000 05(1). (62)
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Figure 6. Gluon corrections to the electroweak quark loop of theZ boson self-energy.

(See equations (B.18) and (B.17) from appendix B. Unless specified otherwise, we use
mt = 175 GeV in numerical evaluations.)

(2) The correctionsδ2Vi are the largest ones. They are caused in the orderᾱα̂s by virtual
gluons in electroweak loops of light quarksq = u,d, s, c,b and heavy quarkt (see
figure 6):

δ2Vi (t) = δq
2 Vi + δt

2Vi (t). (63)

Due to asymptotic freedom of QCD [40] these corrections were calculated in perturbation
theory. The analytical expressions for correctionsδ

q
2 Vi andδt

2Vi (t) are given in [41, 42].
Here we only give numerical estimates for them,

δ
q
2 Vm = −0.377

α̂s

π
, (64)

δ
q
2 VA = 1.750

α̂s

π
, (65)

δ
q
2 VR = 0, (66)

δt
2Vm(t) = −11.67

α̂s(mt )

π
= −10.61

α̂s

π
, (67)

δt
2VA(t) = −10.10

α̂s(mt )

π
= −9.18

α̂s

π
, (68)

δt
2VR(t) = −11.88

α̂s(mt )

π
= −10.80

α̂s

π
, (69)

where [40]

α̂s(mt ) = α̂s

1 + 23
12π α̂s log t

. (70)

(For numerical evaluation, we useα̂s ≡ α̂s(mZ) = 0.120.) We have mentioned already
that the correctionsδt

2Vi (t), whose numerical values were given in (67)–(69), are much
larger than all other terms included inδVi . We emphasize that the term inδt

2Vi that is
leading for hight is universal: it is independent ofi . As shown in [43], this leading term
is obtained by multiplying the Veltman asymptoticst by a factor

1− 2π2 + 6

9

α̂s(mt )

π
, (71)

or, numerically,

t → t

(
1− 2.86

α̂s(mt )

π

)
. (72)
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Figure 7. Vm as a function ofmt for three values ofmH . The dotted parabola corresponds to
Veltman approximation:Vm = t . The solid horizontal line traces the experimental value ofVm

while the dashed horizontal lines give its upper and lower limits at the 1σ level.

Qualitatively, the factor (71) corresponds to the fact that the running mass of thet quark at
momentap2 ∼ m2

t that circulate in thet quark loop is lower than the ‘on the mass-shell’
mass of thet quark. It is interesting to compare the correction (72) with the quantity

m̃2
t ≡ m2

t (p
2
t = −m2

t ) = m2
t

(
1− 2.78

α̂s(mt )

π

)
, (73)

calculated in the Landau gauge in [44], p 102. The agreement is overwhelming. There
is, therefore, a simple mnemonic rule for evaluating the main gluon corrections for the
t-loop.

(3) Correctionsδ3Vi of the order ofᾱα̂2
s are extremely small. They were calculated in the

literature [45] for the term leading int (i.e.ᾱα̂2
st). They are independent ofi (in numerical

estimates we use for the number of light quark flavoursNf = 5):

δ3Vi (t) ' −(2.38− 0.18Nf )α̂
2
s(mt )t ' −1.48α̂2

s(mt )t = −0.07. (74)

4.5. Accidental (?) compensation and the mass of the t quark

Now that we have expressions for all terms in equation (52), it will be convenient to analyse
their roles and the general behaviour of the functionsVi (t, h). As functions ofmt at three fixed
values ofmH , they are shown in figures 7–9. In all these figures, we see a cusp atmt = mZ/2.
This is a typical threshold singularity that arises when the channelZ → t t̄ is opened. It is of
no practical significance since experiments givemt ' 175 GeV. What really impresses is that
the functionVR vanishes at this value ofmt . This happens because of the compensation of the
leading termt and the rest of the terms which produce a negative aggregate contribution, the
main negative contribution coming from the light fermions (see equation (55) for the constant
CR).
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Figure 8. VA as a function ofmt . The dotted parabola corresponds to Veltman approximation:
VA = t . The solid horizontal line traces the experimental value ofVA while the dashed horizontal
lines give its upper and lower limits at the 1σ level.

Figure 9. VR as a function ofmt . The dotted parabola corresponds to Veltman approximation:
VR = t . The solid horizontal line traces the experimental value ofVR while the dashed horizontal
lines give its upper and lower limits at the 1σ level.
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In the one-electroweak loop approximation each functionVi (t, h) is a sum of two
functions, one of which ist-dependent but independent ofh, while the other ish-dependent but
independent oft (plus, of course, a constant which is independent of botht andh). Therefore,
the curves formH = 100 and 800 GeV in figures 7–9 are produced by the parallel transfer of
the curve formH = 200 GeV.

We see in figure 9 that if thet quark were light, radiative corrections would be large
and negative, and if it were very heavy, they would be large and positive. This looks like a
conspiracy of the observable mass of thet quark and all other parameters of the electroweak
theory, as a result of which the electroweak correctionVR becomes anomalously small.

One should specially note the dashed parabola in figures 7–9 corresponding to the Veltman
termt . We see that in the interval 0< mt < 250 GeV it lies much higher thanVA andVR and
approachesVm only in the right-hand side of figure 7. Therefore, the so-called non-leading
‘small’ corrections that were typically replaced with ellipses in standard texts, are found to be
comparable with the leading termt .

A glance at figure 9 readily explains how the experimental analysis of electroweak
corrections allowed, despite their smallness, a prediction, within the framework of the MSM,
of thet quark mass. Even when the experimental accuracy of LEP-I and SLC experiments was
not sufficient for detecting electroweak corrections, it was sufficient for establishing thet quark
mass using the points at which the curvesVR(mt ) intersect the horizontal line corresponding to
the experimental value ofVR and the thin lines parallel to it that show the band of one standard
deviation. The accuracy in determiningmt is imposed by the band width and the slope of
VR(mt ).

The dependenceVi (mH ) for three fixed values ofmt = 150, 175 and 200 GeV can
be presented in a similar manner. As follows from the explicit form of the termsHi (mH ),
the dependenceVi (mH ) is considerably less steep (it is logarithmic). This is the reason
why the prediction of the higgs mass extracted from electroweak corrections has such a high
uncertainty. The accuracy of prediction ofmH greatly depends on the value of thet quark
mass. Ifmt = 150± 5 GeV, thenmH < 80 GeV at the 3σ level. If mt = 200± 5 GeV,
thenmH > 150 GeV at the 3σ level. If, however,mt = 175± 5 GeV, as given by FNAL
experiments [27], we are hugely unlucky: the constraint onmH is rather mild (see figure 10).

Before starting a discussion of hadronic decays of theZ boson, let us ‘go back to the
roots’ and recall how the equations forVi (mt ,mH ) were derived.

4.6. How to calculate Vi ? ‘Five steps’

An attentive reader should have already come up with the question: what makes the amplitudes
of the lepton decays of theZ boson in the one-loop approximation depend on the self-energy
of the W boson? Indeed, the loops describing the self-energy of theW boson appear in the
decay diagrams of theZ boson only beginning with the two-loop approximation. The answer
to this question was already given at the beginning of section 4. We have already emphasized
that we find expressions for radiative corrections toZ boson decays in terms ofᾱ, mZ and
Gµ. However, the expression forGµ includes the self-energy of theW boson even in the
one-loop approximation. The point is that we express some observables (in this particular
case,mW/mZ , gAl , gVl/gAl) in terms of other, more accurately measured, observables (ᾱ, mZ ,
Gµ).

Let us trace how this is achieved, step by step. There are altogether ‘five steps to happiness’,
based on the one-loop approximation. All necessary formulae can be found in appendix D.

Step I.We begin with the electroweak Lagrangian after it has undergone the spontaneous
violation of theSU(2)×U (1) symmetry by the higgs vacuum condensate VEVη and theW
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Figure 10. mt − mH exclusion plots with assumptions of: (a) mt = 150(5) GeV; (b)
mt = 175(5) GeV; (c) mt = 200± 5 GeV.

andZ bosons became massive. Let us consider the bare coupling constants (the bare charges
e0 of the photon,g0 of theW boson andf0 of the Z boson) and the bare masses of the vector
bosons:

mZ0 = 1
2 f0η, (75)

mW0 = 1
2g0η, (76)

and also bare masses:mt0 of thet quark andmH0 of the higgs.
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Figure 10. (Continued.)

Step II.We express̄α, Gµ, mZ in terms of f0, g0, e0, η, mt0, mH0 and 1/ε (see appendix D).
Here 1/ε appears because we use the dimensional regularization, calculating Feynman integrals
in the space ofD dimensions (see appendix A). These integrals diverge atD = 4 and are finite
in the vicinity of D = 4. By definition,

2ε = 4− D→ 0. (77)

Note that in the one-loop approximationmt0 = mt , mH0 = mH , since we neglect the
electroweak corrections to the masses of thet quark and the higgs.

Step II is almost physics: we calculate Feynman diagrams (we say ‘almost’ to emphasize
that observables are expressed in terms of non-observable, ‘bare’, and generally infinite
quantities).

Step III.Let us invert the expressions derived at step II and writef0, g0, η in terms ofᾱ,
Gµ, mZ , mt , mH and 1/ε. This step is a pure algebra.

Step IV.Let us expressVm, VA, VR (or the electroweak one-loop correction to any other
electroweak observable, all of them being treated on an equal basis) in terms off0, g0, η, mt ,
mH and 1/ε. (Like step II, this step is again almost physics.)

Step V.Let us expressVm, VA, VR (or any other electroweak correction) in terms ofᾱ,
Gµ, mZ , mt , mH using the results of steps III and IV. Formally this is pure algebra, but in
fact pure physics, since now we have expressed certain physical observables in terms of other
observables. If no errors were made on the way, the terms 1/ε cancel out. As a result, we
arrive at formula (52) which givesVi as elementary functions oft , h ands.

The five steps outlined above are very simple and visually clear. We obtain the main
relations without using the ‘heavy artillery’ of quantum field theory with its counterterms in
the Lagrangian and the renormalization procedure. This simplicity and visual clarity became
possible owing to the one-loop electroweak approximation. (Even though this approach to
renormalization is possible in multiloop calculations, it becomes more cumbersome than the
standard procedures.) As for the QCD corrections to quark electroweak loops hidden in
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the termsδVi in equation (52), we take the relevant formulae from the calculations of other
authors.

5. One-loop corrections to hadronic decays of theZ boson

5.1. The leading quarks and hadrons

As discussed above (see formulae (31)–(37)), an analysis of hardronic decays reduces to the
calculation of decays to pairs of quarks:Z → qq̄. The key role is played by the concept
of leading hadrons that carry away the predominant part of the energy. For example, the
Z→ cc̄ decay mostly produces two hadron jets flying in opposite directions, in one of which
the leading hadron is the one containing thec̄-quark, for example,D− = c̄d, and in the other
the hadron with the c-quark, for example,D0 = cū or3+

c = udc. Likewise,Z → bb̄ decays
are identified by the presence of high-energyB or B̄ mesons. If one selects only particles with
energy close tomZ/2, the identification of the initial quark channels is unambiguous. The
total number of such cases will, however, be small. If one takes into account as a signal less
energeticB mesons, one faces the problem of their origin. Indeed, a pairbb̄ can be created
not only directly by aZ boson but also by a virtual gluon in, say, aZ→ cc̄ decay orZ→ uū,
or ss̄. This example shows the sort of difficulty encountered by experimentalists trying to
identify a specific quark–antiquark channel. Furthermore, owing to such secondary pairs, the
total hadron width is not strictly equal to the sum of partial quark widths.

We remind the reader that for the partial width0q of the Z → qq̄ decay we had
equation (31), where the standard width00 was given by equation (29) and the radiators
RAq and RV q are given in appendix E. As for the electroweak corrections, they are included
in the coefficientsgAq andgV q. The sum of the Born and one-loop terms has the form

gAq = T3q

[
1 +

3ᾱ

32πs2c2
VAq(t, h)

]
, (78)

Rq ≡ gV q/gAq = 1− 4|Qq|s2 +
3|Qq|

4π(c2− s2)
ᾱVRq(t, h). (79)

5.2. Decays to pairs of light quarks

Here, as in the case of hadronless observables, the quantitiesV that characterize corrections
are normalized in the standard way:V → t ast � 1. Naturally, those terms inV that are due
to the self-energies of vector bosons are identical for both leptons and quarks. The deviation
of the differencesVAq−VAl andVRq−VRl from zero are caused by the differences in radiative
corrections to verticesZ→ qq̄ andZ→ l l̄ . For four light quarks we have

VAu(t, h) = VAc(t, h) = VAl(t, h) +

[
128πs3c3

3ᾱ
(FAl + FAu) = 0.2634

]
, (80)

VAd(t, h) = VAs(t, h) = VAl(t, h) +

[
128πs3c3

3ᾱ
(FAl − FAd) = 0.6295

]
, (81)

VRu(t, h) = VRc(t, h) = VRl(t, h)

+

[
16πsc(c2− s2)

3ᾱ

[
FVl − (1− 4s2)FAl +

3

2

(
−
(

1− 8

3
s2

)
FAu + FV u

)]
= 0.1220

]
, (82)

VRd(t, h) = VRs(t, h) = VRl(t, h)
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+

[
16πsc(c2− s2)

3ᾱ

[
FVl − (1− 4s2)FAl + 3

((
1− 4

3
s2

)
FAd − FV d

)]
= 0.2679

]
, (83)

where (see [41,42]):

FAl = ᾱ

4π
(3.0099 + 16.4δs2), (84)

FVl = ᾱ

4π
(3.1878 + 14.9δs2), (85)

FAu = − ᾱ

4π
(2.6802 + 14.7δs2), (86)

FV u = − ᾱ

4π
(2.7329 + 14.2δs2), (87)

FAd = ᾱ

4π
(2.2221 + 13.5δs2), (88)

FV d = ᾱ

4π
(2.2287 + 13.5δs2). (89)

The values ofF are given here fors2 = 0.231 10− δs2. The accuracy to five decimal places
is purely arithmetic. The physical uncertainties introduced by neglecting higher-order loops
manifest themselves already in the third decimal place.

In addition to the changes given by equations (80)–(83), one has to also take into account
emission of a virtual or ‘free’ gluon from a vertex quark triangle.

The corresponding effect cannot be parametrized in termsVAq and VRq, because it
contributes also to the radiatorsRAq and RV q. The change of0h caused by it has been
calculated only recently [46] and turned out to be rather small:

δ0h(Z→ u,d, s, c) = −0.59(3) MeV. (90)

5.3. Decays to b̄b pair

In the Z → bb̄ decay it is necessary to take into account additionalt-dependent vertex
corrections:

VAb(t, h) = VAd(t, h)−
[

8s2c2

3(3− 2s2)
(φ(t) + δαsφ(t)) = 5.03

]
, (91)

VRb(t, h) = VRd(t, h)−
[

4s2(c2− s2)

3(3− 2s2)
(φ(t) + δαsφ(t)) = 1.76

]
. (92)

Here the termφ(t) calculated in [47] corresponds to at t̄W vertex triangle (see figure 11(a)),
while the termδαsφ(t) calculated in [48], corresponds to the leading gluon corrections to the
term φ(t) (see figure 11(b)): δαsφ(t) ∼ αst . Expressions forφ(t) and δαsφ(t) are given
in [41,42]. Formt = 175 GeV,α̂s(mZ) = 0.120

φ(t) = 29.96, (93)

δαsφ(t) = −3.02, (94)

and correction terms in equations (91) and (92) are very large. The subleading gluon corrections
to φ(t) calculated recently [49] are very small:δ0h(Z→ b) = −0.04 MeV.
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Figure 11. The vertex electroweak diagrams involvingt quark and contributing to theZ → bb̄
decay. (b) represents gluon corrections to diagram (a).

6. Comparison of one-electroweak-loop results and experimental LEP-I and SLC data

6.1. LEPTOP code
A number of computer programs (codes) were written for comparing high-precision data of
LEP-I and SLC. The best known of these programs in Europe isZFITTER [50], which takes
into account not only electroweak radiative corrections but also all purely electromagnetic
ones, including, among others, the emission of photons by colliding electrons and positrons.
Some of the first publications in which thet quark mass was predicted on the basis of precision
measurements [51], were based on the codeZFITTER. Other European codes,BHM, WOH [52],
TOPAZO [53], somewhat differ fromZFITTER. The best known in the USA are the results
generated by the code used by Erler and Langacker [23,54].

The original idea of the authors of this review in 1991–3 was to derive simple analytical
formulae for electroweak radiative corrections, which would make it possible to predict the
t quark mass using no computer codes, just by analysing experimental data on a sheet of paper.
Alas, the diversity of hadron decays ofZ bosons, depending on the constants of strong gluon
interactionα̂s, was such that it was necessary to convert analytical formulae into a computer
program which we jokingly dubbedLEPTOP [55]. TheLEPTOP calculates the electroweak
observables in the framework of the MSM and fits experimental data so as to determine the
quantitiesmt , mH andα̂s(mZ). The logical structure ofLEPTOP is clear from the preceding
sections of this review and is shown in the flowchart on page 42. The code ofLEPTOP can be
downloaded from the Internet home page: http://cppm.in2p3.fr./leptop/introleptop.html

A comparison of the codesZFITTER, BHM, WOH, TOPAZO and LEPTOP carried out in
1994–5 [20] has demonstrated that their predictions for all electroweak observables coincide
with accuracy that is much better than the accuracy of the experiment. The flowcharts of
LEPTOP andZFITTER are compared on pages 25 and 27 of [20]; numerical comparison of
five codes (their 1995 versions) for twelve observables is presented in figures 11–23 of the
same reference. The results of processing the experimental data usingLEPTOP are shown
below.

6.2. One-loop general fit

The second column of table 4 shows experimental values of the electroweak observables,
obtained by averaging the results of four LEP detectors (a), and also SLC data (b) and the
data onW boson mass (c). (The data on theW boson mass from thepp̄-colliders and LEP-
II are also shown, for the reader’s convenience, in the form ofs2

W, while the data ons2
W

from νN-experiments are also shown in the form ofmW. These two numbers are given in
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Table 4. Fit of the experimental data [22] with one-electroweak-loop formulae.mZ =
91.1867(21) GeV is used as an input. Output of the fit:mH = 139.1+134.2

−76.5 GeV, α̂s =
0.1195± 0.0030,χ2/nd.o. f. = 15.1/14.

Experimental Standard
Observable data model Pull

(a) LEP
Shape ofZ-peak
and lepton asymmetries:
0Z (GeV) 2.4939(24) 2.4959(18)−0.8
σh (nb) 41.491(58) 41.472(16) 0.3
Rl 20.765(26) 20.747(20) 0.7
Al

FB 0.0168(10) 0.0161(3) 0.8
τ -polarization:
Aτ 0.1431(45) 0.1465(14)−0.8
Ae 0.1479(51) 0.1465(14) 0.3
Results forb andc
quarks:
Ra

b 0.2166(7) 0.2158(2) 1.0
Ra

c 0.1735(44) 0.1723(1) 0.3
Ab

FB 0.0990(21) 0.1027(10)−1.8
Ac

FB 0.0709(44) 0.0734(8) −0.6
Charge asymmetry for pairs
of light quarksqq̄:
s2
l (QFB) 0.2321(10) 0.2316(2) 0.5

(b) SLC
AL R 0.1504(23) 0.1465(14) 1.7
s2
l (AL R) 0.2311(3) 0.2316(2) −1.7

Ra
b 0.2166(7) 0.2158(2) 0.9

Ra
c 0.1735(44) 0.1723(1) 0.3

Ab 0.8670(350) 0.9348(1) −1.9
Ac 0.6470(400) 0.6676(6) −0.5
(c) pp̄+ LEP-II +νN
mW (GeV) (pp̄) + LEP-II 80.39(6) 80.36(3) 0.5

0.2228(13)
s2
W (νN) 0.2254(21) 0.2234(6) 0.9

80.2547(1089)
mt (GeV) 173.8(5.0) 171.6(4.9) 0.4

a Experimental values ofRb andRc correspond to the average of LEP-I and SLC results.

italics, emphasizing that they are not independent experimental data. The same refers tos2
l

(AL R).) We take experimental data from the paper [22]. The experimental data of table 4 are
used for determining (fitting) the parameters of the standard model in one-electroweak-loop
approximation:mt , mH , α̂s(mZ) andᾱ. (In fitting mt , the direct measurements ofmt by CDF
and D0 (Collaborations) [27] are also used. In fittingᾱ, its value from equation (14) was
used.) The third column shows the results of the fit of electroweak observables with one loop
electroweak formulae. The last column shows the value of the ‘pull’. By definition, the pull
is the difference between the experimental and the theoretical values divided by experimental
uncertainty. The pull values show that for most observables the discrepancy is less than 1σ .
The number of degrees of freedom is 18− 4= 14.
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Table 5. Recalculation withLEPTOP of table 30 of the EWWG report [22].

Average over Cumulative
Observable s2

l groups of observations average χ2/nd.o. f.

Al
FB 0.231 17(55)

Aτ 0.232 02(57)
Ae 0.231 41(65) 0.231 53(34) 0.231 53(34) 1.2/2
Ab

FB 0.232 26(38)
Ac

FB 0.232 23(112) 0.232 26(36) 0.231 87(25) 3.4/4
〈QFB〉 0.232 10(100) 0.232 10(100) 0.231 89(24) 3.4/5
AL R (SLD) 0.231 09(30) 0.231 09(30) 0.231 57(19) 7.8/6

Table 5† gives experimental values ofs2
l . The third column was obtained by averaging of

the second column, and the fourth by cumulative averaging of the third; it also lists the values
of χ2 over the number of degrees of freedom.

7. Two-loop electroweak corrections and theoretical uncertainties

In this section we will discuss heavy top corrections of the second order inαW to mW and to
coupling constants ofZ boson with fermions. Full calculation ofα2

W corrections is still absent.
What have been calculated are corrections of the orderα2

W t2 = α2
W(mt/mZ)

4 [56, 57] and
corrections∼α2

Wt [58–60].
There are two sources ofα2

Wt2 corrections in our approach. The first source are reducible
diagrams with top quark in each loop. The second source are irreducible two-loop Feynman
diagrams which contain top quark [56, 57]. We start our consideration with the first source
the contribution of which is proportional to(5Z(0) − 5W(0))2. Detailed calculations are
presented in appendix F.

7.1. α2
Wt2 corrections to mW/mZ, gA and gV/gA from reducible diagrams

We start our consideration from the ratio of vector boson masses. From equations (F.12) and
(F.13) we obtain:

mW

mZ
= c

[
1 +

c2

2(c2− s2)
δ +

3c4− 10c4s2

8(c2− s2)3
δ2

]
. (95)

Substituting the expression forδ from (F.10) and using the definition ofVm from
equations (47), (52)we obtain the following correction to the functionVm:

δ′4Vm = 4πs2c4(3− 10s2)

3ᾱ(c2− s2)2
δ2 = 3(3− 10s2)ᾱt2

64πs2(c2− s2)2
. (96)

The correction to axial coupling constantgAl is easily derived from equations (F.14) (since
gAl ∼ f0), (F.10) and the definition ofVAl , equations (48), (52):

gAl = − 1
2 − 1

4δ − 3
16δ

2, (97)

δ′4VA = 9ᾱt2

64πs2c2
. (98)

† Table 5 is our recalculation with aLEPTOP program of table 30 of the EWWG report [22]. The numbers forAe and
Aτ in tables 4 and 5 agree with each other, while they disagree in the EWWG report in tables 30 and 31. In order to
restore the agreement one has to interchangeAe andAτ in table 30 of the EWWG report.

Author Query
sense as intended?



Theory of Z boson decays 29

Figure 12. Some Feynman diagrams that giveα2
Wt2 corrections.

Finally, taking into account the definition ofVR, equations (49), (52), and equations (F.15),
(F.7) we get:

gVl/gAl = 1− 4

[
1− c2− c2s2

c2− s2
δ +

c4s4

(c2− s2)3
δ2

]
= 1− 4s2 +

4c2s2

c2− s2
δ − 4c4s4

(c2− s2)3
δ2, (99)

δ′4VR = − 3ᾱt2

16π(c2− s2)2
. (100)

Formulae (96), (98) and (100) contain corrections to the functionsVi which come from
the squares of polarization operators and are proportional toᾱt2—so, it is leading (∼t2) parts
of (5Z −5W)

2 corrections. Numerically they are several times smaller thanᾱt2 corrections
which originate from irreducible diagrams.

7.2. α2
Wt2 corrections from irreducible diagrams

The major part of theα2
Wt2 corrections comes from the irreducible two-loop Feynman diagrams

[56, 57]. The key observation in performing their calculation is that these corrections are of
the order of [αW(

mt
mZ
)2]2 ∼ λ4

t , whereλt is the coupling constant of the higgs doublet with the
top quark. That is why they can be calculated in a theory without vector bosons, taking into
account only top–higgs interactions [56]. Corresponding pieces of vector boson self-energies
can be extracted from the self-energies of would-be Goldstone bosons which enter the Higgs
doublet (those components which, after mixing with massless vector bosons, form massiveW
andZ bosons). Correction of the order ofα2

Wt2 is contained in the difference5Z(0)−5W(0)
(see figure 12), so it is universal, i.e. one and the same forVm, VA andVR. In [42] we call
these correctionsδ4Vi :

δ4Vi (t, h) = − ᾱ

16πs2c2
A(h/t) · t2, (101)

where functionA(h/t) is given in table 6. To obtain this table formH/mt < 4 we use a table
from [57], and formH/mt > 4 we use expansion overmt/mH from [56]. Formt = 175 GeV
andmH = 150 GeV we getA = 6.4 andδ4Vi (t, h) = −0.08. This corresponds to the shifts:
−12 MeV formW, 7×10−5 for s2

l and 5×10−5 for gAl . One should compare these shifts with
one-loop results:δ1loopmW = 400 MeV,δ1loops2

l = 50× 10−5 andδ1loopgA = 100× 10−5.
Recall that present experimental accuracy inmW is 64 MeV, ins2

l is 20× 10−5 and ingAl is
30× 10−5.

There is one more place from which corrections∼α2
Wt2 appear: this is theZ→ bb̄ decay.

At one electroweak loop thet quark can propagate in the vertex triangle (t t̄W) (see section 5).

Author Query
please clarify?
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Table 6. FunctionsA(mH /mt ) andτ (2)b (mH /mt ).

mH /mt A(mH /mt ) τ
(2)
b (mH /mt ) mH /mt A(mH /mt ) τ

(2)
b (mH /mt )

0.00 0.739 5.710 2.60 10.358 1.661
0.10 1.821 4.671 2.70 10.473 1.730
0.20 2.704 3.901 2.80 10.581 1.801
0.30 3.462 3.304 2.90 10.683 1.875
0.40 4.127 2.834 3.00 10.777 1.951
0.50 4.720 2.461 3.10 10.866 2.029
0.60 5.254 2.163 3.20 10.949 2.109
0.70 5.737 1.924 3.30 11.026 2.190
0.80 6.179 1.735 3.40 11.098 2.272
0.90 6.583 1.586 3.50 11.165 2.356
1.00 6.956 1.470 3.60 11.228 2.441
1.10 7.299 1.382 3.70 11.286 2.526
1.20 7.617 1.317 3.80 11.340 2.613
1.30 7.912 1.272 3.90 11.390 2.700
1.40 8.186 1.245 4.00 11.396 2.788
1.50 8.441 1.232 4.10 11.442 2.921
1.60 8.679 1.232 4.20 11.484 3.007
1.70 8.902 1.243 4.30 11.523 3.094
1.80 9.109 1.264 4.40 11.558 3.181
1.90 9.303 1.293 4.50 11.590 3.268
2.00 9.485 1.330 4.60 11.618 3.356
2.10 9.655 1.373 4.70 11.644 3.445
2.20 9.815 1.421 4.80 11.667 3.533
2.30 9.964 1.475 4.90 11.687 3.622
2.40 10.104 1.533 5.00 11.704 3.710
2.50 10.235 1.595

That is why at two loops correction of the orderα2
Wt2 emerges. Due to this correction, functions

VAb(t, h) andVRb(t, h) differ from the corresponding functions describingZ→ dd̄ decay:

VAb(t, h) = VAd(t, h)− 8s2c2

3(3− 2s2)
(φ(t) + δφ(t, h)), (102)

VRb(t, h) = VRd(t, h)− 4s2(c2− s2)

3(3− 2s2)
(φ(t) + δφ(t, h)), (103)

where functionφ(t) was discussed in section 5 and

δφ(t, h) = δαs(t)φ + δHφ(t, h)

= 3− 2s2

2s2c2

{
−π

2

3

(
α̂s(mt )

π

)
t +

1

16s2c2

(
ᾱ

π

)
t2τ

(2)
b

(
h

t

)}
. (104)

The first term in curly braces,δαsφ, was taken into account earlier, see section 5, and
the new correctionδHφ(t, h) is proportional to functionτ (2)b (h/t). Functionτ (2)b is given in
table 6. To obtain this table formH/mt < 4 we use a table from [57], and formH/mt > 4 we
use expansion overmt/mH from [56] in full analogy with functionA(h/t).

For mt = 175 GeV,mH = 150 GeV we haveτ (2)b = 1.6.
The change of0b due toτ (2)b = 1.6 equals 0.03 MeV, which corresponds to 2×10−5 shift

in Rb, while experimental accuracy inRb is 7× 10−4 (the one-loop electroweak correction in
Rb is−3.9× 10−3). The influence ofτ (2)b on Ab

FB andAb is even smaller (by a few orders of
magnitude).
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7.3. α2
Wt corrections and the two-loop fit of experimental data

Corrections of the orderα2
Wt originate from the top loop contribution toW andZ boson self-

energies with higgs or vector boson propagating inside the loop and are of the order ofg2λ2
t .

We take into account these corrections in our codeLEPTOP using results of [58–60].
Before we present results of the electroweak precision data fit which take into account

α2
W corrections, described in this section, we must discuss how good the approximation which

takes into accountα2
Wt2 andα2

Wt terms but neglects (still not calculated)α2
W terms should be.

Formt = 175 GeV we obtaint ' 3.7, thus at first glance we have good expansion parameter so
thatα2

W terms could be safely neglected. To check this let us consider first the one electroweak
loop, where the enhancedαWt terms can be compared with non-enhancedαW terms.

By using equations (47) and (49) and by comparing them with experimental data one
sees that formW/mZ theαWt term is equal to 0.0057, while theαW term is−0.0014. As for
gVl/gAl , the two terms are 0.0122 and−0.0142. Thus formW/mZ theαWt term dominates,
while for gVl/gAl it is practically cancelled by theαW term.

Returning to two-loop corrections we observe that theα2
Wt2 correction tomW is not larger

than theα2
Wt correction; formt = 175 GeV andmH = 150 GeV it diminishesmW by 23 MeV

(compare with section 7.2).
In table 7 we present results of the fit of the data where we use theoretical formulae which

include the two-loop electroweak corrections described in this section. Comparing table 7
with table 4 where the fit of the one-loop electroweak corrected formulae was presented, we
see that the fitted values of all physical observables are practically the same, with one (very
important) exception: the central value of the higgs mass becomes∼70 GeV lower. In view
of the previous discussion it seems reasonable to consider this shift as a cautious estimate of
the theoretical uncertainty inmH .

We have a simple qualitative explanation as to whyα2
Wt corrections reduce the higgs mass

by∼70 GeV. The point is that these corrections shift the theoretical value ofs2
l by +0.0002,

which is close to experimental error ins2
l . In order to compensate for the shift, the fitted mass

of the higgs changes. This change can be easily derived. Indeed, from equations (49), (52),
(45) we get:

δs2 = − 3

16π(c2− s2)
ᾱδHR = −0.000 86δHR, (105)

while from table 3 we see that changingmH from 150 to 100 GeV givesδHR = +0.236 and
δs2 = −0.0002.

In figure 13 the dependence ofχ2 on the value of higgs mass is shown both with and
without inclusion of SLD data (Z-decays into heavy quark pairs are taken into account in both
plots). When all existing data are taken into account we get a central value of higgs mass
mH = 71 GeV which is 20 GeV below the lower bound [22] of the LEP-II direct searches,
mH > 95 GeV. However, uncertainty in the value ofmH extracted from radiative corrections
is quite large, thus there is no contradiction between these two numbers.

At the end of this section we would like to make two remarks demonstrating that one
should not take too seriously the central values ofmH extracted from the global fits.

First, if one disregards the FNAL measurements ofmt , then one obtains from the fit:

mt = 160.7+7.7
−6.8 GeV, mH = 30.3+38.8

−14.4 GeV.

Such a value ofmH is 1.5 standard deviations below the lower bound from direct searches
of LEP-II. (Note also that the fitted value of the top massmt is substantially lower than measured
at FNAL).

Second, as was stressed in [61], the values ofs2
l extracted from different observables lead

to very different central values ofmH . For example, from SLAC data onAL R it follows that
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Table 7. Fit of experimental data [22] with two-electroweak-loop formulae.mZ =
91.1867(21)GeV is used as an input. Output of the fit:mH = 70.8+82

−43 GeV,α̂s = 0.1194±0.0029,
χ2/nd.o. f. = 15.0/14. The most optimistic errors onMH are obtained in the fit including
ᾱ(DH)−1 = 128.923(36) [30] andαs(P DG) = 0.1178(23) from low-energy data [27]. Such a
fit givesmH = 93+63

−41 GeV,mt = 171.3±4.8 GeV,αs = 0.1184±0.0018,χ2/nd.o. f. = 15.2/14.
However the systematic errors due to the model assumptions used in the calculations ofαs(P DG)
andᾱ(DH) are not easy to estimate. That is why we prefer to use the result with less optimistic
assumptions leading to bigger error inmH .

Experimental Standard
Observable data model Pull

(a) LEP-I
Shape ofZ-peak and
lepton asymmetries:
0Z (GeV) 2.4939(24) 2.4960(18)−0.9
σh (nb) 41.491(58) 41.472(16) 0.3
Rl 20.765(26) 20.746(20) 0.7
Al

FB 0.0168(10) 0.0161(4) 0.7
τ -polarization:
Aτ 0.1431(45) 0.1467(16)−0.8
Ae 0.1479(51) 0.1467(16) 0.2
Results for heavy quarks:
Ra

b 0.2166(7) 0.2158(2) 1.0
Ra

c 0.1735(44) 0.1723(1) 0.3
Ab

FB 0.0990(21) 0.1028(12)−1.8
Ac

FB 0.0709(44) 0.0734(9) −0.6
Charge asymmetry for pairs of
light quarksqq̄:
s2
l (QFB) 0.2321(10) 0.2316(2) 0.5

(b) SLC
s2
l (AL R) 0.2311(3) 0.2316(2) −1.6
AL R 0.1504(23) 0.1467(16) 1.6
Ra

b 0.2166(7) 0.2158(2) 0.9
Ra

c 0.1735(44) 0.1723(1) 0.3
Ab 0.8670(350) 0.9348(2) −1.9
Ac 0.6470(400) 0.6677(7) −0.5
(c) pp̄+ LEP-II +νN
mW (GeV) (pp̄+ LEP-II) 80.3902(64) 80.3659(34) 0.4

0.2228(13)
s2
W (νN) 0.2254(21) 0.2233(7) 1.0

80.255(109)
mt (GeV) 173.8(5.0) 170.8(4.9) 0.6

rma Experimental values ofRb andRc correspond to the average of LEP-I and SLC results.

mH = 25 GeV with a 90% confidence interval of 6–100 GeV. Even smaller values ofmH

follow from LEP measurement ofAτFB: mH = 4 GeV (0.2 GeV< mH < 95 GeV at 90%
CL). As for other asymmetries measured at LEP, they lead to much heavier higgs: fromAb

FB,
for example,mH = 370 GeV (100 GeV< mH < 1400 GeV at 90% CL). That is why the
average of all these values ofmH seems to be not very reliable.

As can be seen from table 8, theLEPTOP fit is very close to theZFITTER fit [22] and to
the fit by Erler and Langacker [23]. This indicates that theoretical uncertainties are very small,
except for the non-calculated part of the corrections, which is common to all three programs.
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Figure 13. χ2 versusmH curves.

8. Extensions of the SM

The SM works well at the energy scale of the order of the vector bosons masses. We see that
the SM description of the electroweak observables in this energy region is in perfect agreement
with the precision measurements.

However there are many natural physical questions that have no satisfactory answers
within the framework of the SM. So it is hard to believe that the SM is the final theory. The
common expectation is that there should be new physics beyond the SM.

Direct accelerator searches have not yet found any trace of new physics. Their negative re-
sults have given lower bounds on the masses and upper bounds on the production cross sections
for the new particles. In this section we are going to study the indirect bounds on new physics
that can be theoretically derived from the precision measurements at low energy of the order of
Z andW boson masses. Loops with hypothetical new particles change the predictions of the SM
for electroweak observables. Since the SM gives a very good description of the data there is lit-
tle room for such new contributions. In this way one can derive some constraints on new theory.

Any possible generalizations of the SM are naturally divided into two classes: theories
with and without decoupling. In the first class, the contribution of new particles intoW and
Z boson parameters are suppressed as positive powers of(m2

Z/m2)n when the masses of new
particlesmbecome larger than electroweak scale. One cannot exclude such theory by studying
loop corrections to low-energy observables. In this way one may hope to bound the masses of
new particles from below. The most well known examples of such theory are supersymmetric
extensions of the SM.

In the second class of theories the contribution of new particles into low-energy observables
does not decouple even when their masses become very large. Such SM generalizations can
be excluded if the additional nondecoupled contributions exceed the discrepancy between the
SM fit and experimental data. An example of such generalization is the SM with additional
sequential generations of quarks and leptons.
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Table 8. Comparison of theLEPTOP,ZFITTER [22] and Erler–Langacker [23] fits. Erler–Langacker
use slightly different experimental dataset for their fit. This may cause some of the discrepancies
with LEPTOP andZFITTER.

Experimental EWWG Erler–
Observable data LEPTOP ZFITTER Langacker

(a) LEP-I
MZ (GeV) 91.1867(21) 91.1867 fix. 91.1865 91.1865(21)
0Z (GeV) 2.4939(24) 2.4960(18) 2.4958 2.4957(17)
σh (nb) 41.491(58) 41.472(16) 41.473 41.473(15)
Rl 20.765(26) 20.746(20) 20.748 20.748(19)
Al

FB 0.0168(10) 0.0161(4) 0.01613 0.0161(3)
Aτ 0.1431(45) 0.1467(16) 0.1467 0.1466(15)
Ae 0.1479(51) 0.1467(16) 0.1467 0.1466(13)
Rb 0.2166(7) 0.2158(2) 0.2159 0.2158(2)
Rc 0.1735(44) 0.1723(1) 0.1722 0.1723(1)
Ab

FB 0.0990(21) 0.1028(12) 0.1028 0.1028(10)
Ac

FB 0.0709(44) 0.0734(9) 0.0734 0.0734(8)
s2
l (QFB) 0.2321(10) 0.2316(2) 0.23157 0.2316(2)

(b) SLC
s2
l (AL R) 0.2311(3) 0.2316(2) 0.23157 —
AL R 0.1504(23) 0.1467(16) — 0.1466(15)
Ab 0.8670(350) 0.9348(2) 0.935 0.9347(1)
Ac 0.6470(400) 0.6677(7) 0.668 0.6676(6)
(c) pp̄+ LEP-II +νN
mW (GeV) (pp̄+ LEP-II) 80.3902(64) 80.3659(34) 80.37 80.362(23)

0.2228(13)
s2
W (νN) 0.2254(21) 0.2233(7) 0.2232

80.255(109)
mt (GeV) 173.8(5.0) 170.8(4.9) 171.1(4.9) 171.4(4.8)
mH (GeV) 71.0+82

−43 76.0+85
−47 107.0+67

−45
αs 0.1194(29) 0.119(3) 0.1206(30)
ᾱ−1 128.878(90) 128.875 128.878

8.1. Sequential heavy generations in the SM

We start the discussion of new physics with the simplest extension of the SM, namely the SM
with additional sequential generations of leptons and quarks [62–64]. Nobody knows any deep
reason for the number of generations to be equal to three. So it is interesting to study whether
it is allowed to have four and more generations. Certainly these new generations should be
heavy enough not to be produced in theZ decays and at LEP-II.

We consider the case of no mixing between the known generations and the new ones. In
this case the new fermion generations effect the ratiomW/mZ and the widths and the decay
asymmetries of theZ boson only through the vector bosons self-energies. Such corrections
have been dubbed [88] ‘oblique corrections’. We start their study with the case ofSU(2)
degenerate fourth generation:

mU = mD = mQ, mN = mE = mL . (106)

New terms in the self-energies modify the functionsVm,VA,VR, i.e. the radiative
corrections tomW/mZ , gAl andgVl/gAl . The contribution toVi from the fourth generation
can be written in the form:

Vm→ Vm + δ4Vm, VA→ VA + δ4VA, VR→ VR + δ4VR. (107)
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Figure 14. The two-dimensional exclusion plot for the case ofN extra generations and for the
choicemD = 130 GeV—the lowest allowed value for new quark mass from Tevatron search [27],
usingmH > 90 GeV at 95 % CL from LEP-2 [89]. The cross corresponds toχ2 minimum; curves
show one sigma, two sigma, etc allowed domains.

The analytical expressions forδ4Vi for quark or lepton doublets (neglecting gluonic corrections)
can be found in appendix G, equations (G.1)–(G.3).

In the limit of a very heavy fourth generation of leptons and quarks one has:

6δ4Vm→− 16
9 s2, 6δ4VR→− 8

9, 6δ4VA→ 0, (108)

where6 denotes sum over leptons and quarks withmQ = mL = m4, s2 ' 0.23.
Equations (108) reflect the non-decoupling of the heavy degrees of freedom in electroweak
theory, caused by the axial current. It is interesting that the contribution of degenerate
generation toVm,VR has negative sign.

The fourth generation with strong violation ofSU(2) symmetry (i.e. with very large
mass difference in the doublet) gives a universal contribution to functionsδ4Vi (similar to the
universal contribution oft andb quarks from the third generation toVi ):

δ4Vi = 4|m2
T −m2

B|/3m2
Z . (109)

In the case of large mass splitting,δ4Vi are positive. From equations (108) and (109) it
is clear that somewhere in the intermediate region of mass splitting the functionsδ4Vm and
δ4VR intersect zero. In the vicinities of these zeros the contribution of new generation to these
specific observables is negligible and one cannot exclude these regions of masses by studying
only one of the observables. Fortunately, for different observables these zeros are located in
different places and the general fit overcomes such a conspiracy of new physics.

For different up and down quark (and lepton) masses analytical expressions forδ4Vi are
given in appendix G, equations (G.4)–(G.6).

Figure 14 shows the two-dimensional exclusion plot for the case ofn extra generations,
wheren is formally considered as a continuous parameter. We see from this plot that at 90%
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CL we have less than one extra generation and at 99% CL, less than two extra generations, for
any differences of up and down quark masses.

8.2. SUSY extensions of the SM

In this section we consider another example of new physics: supersymmetric extensions of
the SM. There are certain aesthetic and conceptual merits of such SUSY generalization of the
SM. Here are some of them:

(1) Supersymmetry gives a solution for the problem of fine tuning, i.e. it prevents the
electroweak scale of the SM from mixing with the Planck scale.

(2) The problem of unification of electroweak and strong coupling constants seems to have
solution in the framework of SUSY extensions.

(3) Finally, any ambitious ‘theory of everything’ inevitably includes SUSY as the basic
element of the construction.

To give a systematic introduction to SUSY extensions of the SM would need a separate
review paper (see, e.g., [65]). Here we are going to make a short sketch of this well developed
branch of physics in applications to the theory of theZ boson. To construct SUSY extensions
one has to introduce a lot of new particles. For example, minimalN = 1 supersymmetry
automatically doubles the number of degrees of freedom of the SM: any fermionic degree of
freedom has to be coupled with bosonic degree of freedom and vice versa. Thus the left(right)
leptons have to be accompanied by scalars: ‘left’(‘right’) sleptons, quarks by squarks, gauge
bosons by spinor particles—gauginos, etc. The Higgs mechanism of mass generation for up
and down quarks requires two Higgs boson doublets (and two higgsino doublets, respectively).

Not one of these numerous new particles has been observed yet. If they do exist they
are too heavy to be produced at the working accelerators. On the other hand, these heavy
supersymmetric particles (again, if they do exist) are produced in the virtual states, i.e. in
the loops. Loops with new particles change the predictions of the SM for the low-energy
observables. (By ‘low energy’ we mean hereE . mZ .) In this indirect way one can get some
information about the existence or nonexistence of SUSY.

The SUSY extensions of the SM belong to the class of new physics that decouples from
the low-energy observables when the mass scale of this new physics becomes very large. This
means that the additional contribution into electroweak observables due to the supersymmetric
particles are of the order ofαW(mW/mSU SY)

2 orαW(mt/mSU SY)
2 , wheremSU SYcharacterizes

the mass scale of superpartners. Since the fit of the precision data in the framework of the SM
statistically is very good these new additional contributions have to be small. So in this way
one expects to get strong restrictions on the value ofmSU SY.

Supersymmetric contributions into low-energy observables were studied in [66–69]. The
results depend on the model and on the pattern of SUSY violation. Within a given model the
results for low-energy observables are formulated in terms of the functions that depend on
the fundamental parameters of the SUSY Lagrangian that are fixed at the high-energy scale
of SUSY violation. The fit of experimental data in the framework of a given SUSY model
imposes certain restrictions on the allowed region of these high-energy scale parameters of the
model. As for the masses of sparticles, their values are calculated by numerical solution of the
renormalization group equations. They also depend on the fundamental SUSY parameters at
the high-energy scale. In this rather indirect way one gets restrictions on the physical masses
of sparticles in the general case.

To give the reader a taste of the exploration of the new supersymmetric physics we consider
in this section only that part of the multi-dimensional space of SUSY parameters for which all



Theory of Z boson decays 37

sparticles have more or less the same masses, i.e. when we have no light sparticles. (It seems
reasonable to start the study of the unknown field with one of the simplest assumptions). In
this case one can find the class of enhanced oblique corrections which are universal, i.e. that
are the same for any model. Another merit of these corrections is that they directly depend on
the masses of sparticles.

As will be shown, the enhanced electroweak radiative SUSY corrections are induced by
the large violation ofSU(2)L symmetry in the third generation of squarks. Therefore we start
the discussion of the SUSY corrections to the functionsVi with the brief description of the stop
(t̃L , t̃R) and sbottom(b̃L , b̃R) sector of the theory. The following relation between masses of
quarksq and diagonal masses of left squarksq̃L takes place in a wide class of SUSY models:

m2
q̃L
= m2

q + m2
SU SY+ m2

Z cos(2β)(T3− s2Qq), (110)

wheres2 ' 0.23, Qq is the charge andT3 is the third projection of weak isospin of quark
and tgβ is equal to the ratio of the VEV of two Higgs fields, introduced in SUSY models.
The second term in the r.h.s. of equation (110) violates supersymmetry. It is some universal
SU(2)-blind SUSY-violating soft mass term. The third term in r.h.s. of equation (110) also
violates SUSY. It originates from the quarticD term in the effective potential and is different
for up anddown components of the doublets. The only hypothesis that is behind this relation
is that the origin of the large breaking of thisSU(2)L is in the quark–higgs interaction.

Therefore, from equation (110) we get the following relation between masses of stopm2
t̃L

,

of sbottomm2
b̃L

and of topm2
t (we neglectmb):

m2
t̃L
−m2

b̃L
= m2

t + m2
Z cos(2β)c2. (111)

Relation (111) is central to this approach. It demonstrates the large violation ofSU(2)L
symmetry in the third generation of squarks. On the other hand, it demonstrates that in the
limit of very large mass the left stop and left sbottom become degenerate and the parameter
(m2

t̃L
−m2

b̃L
)/m2

b̃L
goes to zero whenmSU SYgoes to infinity. That is why the physical observables

can depend on this decoupling parameter.
As for the right sparticles from the third generation, they areSU(2)L singlets. But they

can mix with the left sparticles and in this way they contribute into enhanced corrections. The
mixing betweenb̃L , b̃R has to be proportional tomb and can be neglected. Thet̃L t̃R mass
matrix in general has the following form:(

m2
t̃L

mt A′t
mt A′t m2

t̃R

)
, (112)

wheret̃L t̃R mixing is proportional tomt and therefore is not small. CoefficientA′t depends on
the model. Diagonalizing matrix (112) we get the following eigenstates:

t̃1 = cut̃L + sut̃R

t̃2 = −sut̃L + cut̃R,
(113)

wherecu ≡ cosθL R, su ≡ sinθL R, θL R is thet̃L t̃R mixing angle, and

tg2θL R =
m2

1−m2
t̃L

m2
t̃L
−m2

2

, m2
1 > m2

t̃L
> m2

2. (114)

Parametersm1 andm2 are the mass eigenvalues:

m2
1,2 =

m2
t̃L

+ m2
t̃R

2
±
|m2

t̃L
−m2

t̃R
|

2

√
1 +

4m2
t A′2t

(m2
t̃L
−m2

t̃R
)2
. (115)
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Figure 15. Contribution oft̃ andb̃ squarks intoW andZ bosons self-energy.

The enhanced electroweak radiative corrections are induced by the contribution of the
third generation of squarks into self-energy operators of vector bosons. Nondiagonal vector
currents of squarks are not conserved only because of violation ofSU(2) by mass terms.
Thus one should expect that the self-energy operators are proportional to the divergency of the
currents. To calculate these enhanced terms it is sufficient to expand the operators of the vector
bosons6V (k2) atk2 = 0. The terms enhanced asm4

t /M2
SU SYcome from6W(0), while those

enhanced asm2
t M2

W/M2
SU SY come from6′W,Z(0) (see figure 15). These simple self-energy

corrections are obviously universal since stop and sbottom should exist in any SUSY model
and the coupling constants are universal since they are fixed by gauge invariance only. The
higher-order derivatives of self-energies are suppressed as(mW,Z/mSU SY)

2. They are of the
same order of magnitude as the numerous model-dependent terms coming from vertex and
box diagrams. If there are no very light sparticles, the first two universal terms have rather
large enhancement factor of the order oft2 ' 14 andt ' 3.7, respectively. (The presence of
terms∼ m4

t in SUSY models was recognized long ago [70].) We neglect the non-enhanced
terms. The accuracy of such approximation may be of the order of 10% if we are lucky, but it
may be as well of the order of unity (see the discussion ofVR in section 5 and of the two-loop
corrections in section 7). As for the stop contributions to the vertex corrections, there is only
one relevant case—the amplitude ofZ → bb̄ decay. For vertex with stop exchange there are
no terms enhanced as(mt/mW)

4 [71]. Thus we will neglect the corresponding corrections as
well.

The calculation of the two enhanced terms is a rather trivial exercise. The only subtle
point is the diagonalization of the stop propagators. The result of calculations depends on three
parameters:m1, m2 andmb̃L

. The dependence on angleβ is very moderate and in numerical
fits we will use the rather popular value tgβ = 2. In what follows, instead ofmb̃L

we will

write mb̃, bearing in mind that̃bLb̃R mixing is proportional tomb and can be neglected. The
formulae that describe the enhanced SUSY corrections to the functionsVi can be found in
appendix G, equations (G.7)–(G.11).

There is also another source of the potentially large SUSY corrections: vertices with
gluino exchange of the orderα̂s(mZ/mSU SY)

2.
These corrections shift the radiatorsRVq andRAq in equation (31) [73]:

δRVq = δRAq = 1 +
α̂s(mZ)

π
11(x, y), (116)

11(x, y) = −4

3

∫ 1

0
dz1

∫ 1−z1

0
dz2 log

[
1− xyz1z2

x + (z1 + z2)(y− x)

]
, (117)

wherex = (mZ/mq̃)
2, y = (mZ/mg̃)

2, and11(x, x) ' 1
18x + · · · . We take these gluino

corrections into account in our analysis. The electroweak SUSY corrections togAq andgVq

are generated by the corrections to the functionVA, equation (G.7), andVR, equation (G.8).
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Table 9. Fit of the precision data with SUSY corrections taken into account in the case of the
absence of̃tL t̃R mixing, sinθL R = 0 andmh taken as a free parameter. Formb̃ > 300 GeV SUSY.

mb̃ mh

(GeV) (GeV) α̂s χ2/nd.o. f.

100 850+286
−320 0.113± 0.003 20.3/14

150 484+364
−235 0.116± 0.003 18.1/14

200 280+240
−144 0.117± 0.003 17.3/14

300 152+145
−87 0.118± 0.003 16.3/14

400 113+115
−68 0.119± 0.003 15.8/14

1000 77+87
−47 0.119± 0.003 15.2/14

Table 10. As table 9 but with the value of the lightest Higgs boson massmh = 120 GeV which is
about the maximum allowed value in the simplest SUSY models.

mb̃
(GeV) α̂s χ2/nd.o. f.

100 0.110± 0.003 30.2/15
150 0.115± 0.003 21.9/15
200 0.116± 0.003 18.6/15
300 0.118± 0.003 16.4/15
400 0.119± 0.003 15.8/15

1000 0.119± 0.003 15.5/15

Having all the necessary formulae in hand, we start the new fit of the data with the simplest
case of the absence oft̃L t̃R mixing, sinθL R = 0. In this case we have only one additional mass
parameter. Thus we expect that this mass should be heavy enough not to destroy the perfect
SM fit of the experimental data. First, let us take the value of the lightest neutral Higgs boson
mass as a free parameter and take the masses of the other three Higgs bosons to be very heavy.
The results of the fit are shown in table 9. We see that to fit the data with light sbottom one
has to take the mass of the Higgs boson as much larger than its SM fit value. Even in this case
the quality of the fit is worse than the SM one. For very heavy sbottom, one reproduces the
SM fit. (To reduce the number of parameters we takemg̃ = mb̃ in this fit. Let us stress that
light squarks with masses of the order of 100–200 GeV are usually allowed only if gluinos are
heavy,mg̃ > 500 GeV [74]. In the case of heavy gluino the correction11 (equation (117))
becomes power suppressed and we return to the SM fit value ofα̂s = 0.119(3).)

We see that to get a reasonably good fit of the data in the framework of the SUSY extensions
with light squarks one has to put the lightest higgs mass in the TeV region. Recall that in
SUSY models the mass of the Higgs boson is not an absolutely free parameter. In the minimal
supersymmetric standard model (MSSM), among three neutral Higgs bosons the lightest one
should have mass less than approximately 120–135 GeV [76]. If other higgses are considerably
heavier the lightest scalar boson has the same couplings with gauge bosons as in the SM. As
a result, the same SM formulae for radiative corrections can be used in the SUSY extensions
of the SM. (Deviations from the SM formulae are suppressed as(mh/mA)

2, wheremA is the
mass of the heavier higgs. We will assume in our analysis thatmA is large). For the maximum
allowed value,mh ' 120 GeV, the results of the fit are shown in table 10. (In what follows we
will always takemh ' 120 GeV, since for 90 GeV< mh < 135 GeV the results of the fit are
practically the same.) Table 10 demonstrates that superpartners should be heavy if we want to
have a good fit of the data.
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Figure 16. Values ofδVA, δVR andδVm atmb̃ = 200 GeV.

The next step is to take into accountt̃L t̃R mixing. In figure 16 we show the dependence of
SUSY correctionsδSU SYVi onm1 andm2 for mb̃ = 200 GeV. One clearly sees from this figure
that even for this small value ofmb̃ there exist the domain of lowm2 values where the enhanced
radiative corrections are suppressed. In figure 16 one sees the valley whereδSU SYVi reaches
its minimum values which are considerably smaller than one. The valley starts atm2 ' mb̃,
m1 ' 1000 GeV and goes tom2 ' 100 GeV,m1 ' 400 GeV. The smallness of the radiative
corrections at the pointm2 ' mb̃, m1 ' 1000 GeV can be easily understood: hereθL R ' π/2,
t̃2 ' t̃L , t̃1 ' t̃R. Thus nondiagonal charged left current of squarks is conserved and the main
enhanced term vanishes. Indeed, inδSU SYVA only the term proportional tog(m2,mb̃) remains
in equation (G.7), but form2 = mb̃ it is equal to zero. At this end point of the valleyt̃2 ' t̃L ,
t̃1 ' t̃R, som2

t̃R
� m2

t̃L
, which is opposite to the relation betweenmt̃R

andmt̃L
occurring in

a wide class of models. In these models (e.g. in the MSSM) the left and the right squark
masses are equal at the high-energy scale. When renormalizing them to low energies one gets
m2

t̃L
> m2

t̃R
. Almost along the whole valley we have tg2θL R > 1, which means thatm2

t̃R
> m2

t̃L
.

This possibility of suppressing radiative corrections was discussed in [75] . However, in the
vicinity of the end pointm1 ' 300 GeV,m2 ' 70 GeV the value of tg2θL R becomes smaller
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Figure 16. (Continued.)

Table 11. Results of fit along the valley of minimum ofχ2 for fixed valuemb̃ ' 200 GeV and
mh ' 120 GeV.

m1 m2

(GeV) (GeV) α̂s χ2/nd.o. f.

1296 193 0.118± 0.003 15.6/15
888 167 0.118± 0.003 15.8/15
387 131 0.118± 0.003 16.1/15
296 72 0.117± 0.003 16.7/15

than one andm2
t̃R
< m2

t̃L
.

In table 11 we show values ofχ2 along the valley of its minimum, which is formed for
mb̃ = 200 GeV. We observe that a good fit is possible for light superpartners ift̃L t̃R mixing is
taken into account.

The main lesson of this section is the following. The fit of the precision data on electroweak
observables (i.e. ofZ boson decay parameters from LEP and SLC and the values ofmW and
themt from Tevatron) in the framework of SUSY extension of the SM assuming small value
of mb̃, the absence of̃tL t̃R mixing andmh = 120 GeV leads to the growth ofχ2 value. For
heavy squarks, the SUSY sector of the theory decouples from low-energy observables and the
results of SM fit are reproduced. On the other hand, even for light sbottom and for small mass
of one of two stops, one can find the values oft̃L t̃R mixing where supersymmetric corrections
appear to be small and not excluded by experimental data. In this case the quality of the fit
(i.e. the value ofχ2) is almost the same as in the SM.

9. Conclusions

The comparison of LEP-I and SLC precision data onZ boson decays with calculations based
on the MSM has confirmed the predictive power of the latter.

(1) It was proved that there exist only three generations of quarks and leptons with light
neutrinos.

(2) The Z boson couplings of quarks, charged leptons and neutrinos are in accord with the
theory.
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Choose three observables measured with the highest accuracy:

Gµ,mZ, α(mZ) ≡ ᾱ

Determine angleθ (s≡ sinθ, c ≡ cosθ )

in terms ofGµ,mZ, ᾱ: Gµ = (π/
√

2)ᾱ/s2c2m2
Z

Introduce bare coupling constants in the framework of MSM
(α0, αZ0, αW0), bare masses (mZ0,mW0,mH0,mt0,mq0)

and the vacuum expectation value (VEV) of the higgs field,η.

Expressα0, αZ0,mZ0 in terms ofGµ,mZ, ᾱ in one-loop

approximation, using dimensional regularization(1/ε, µ).

Express one-electroweak-loop corrections to all electroweak

observables in terms ofα0, αZ0,mZ0,mt ,mH , and hence, in terms of
of Gµ,mZ, ᾱ,mt ,mH . Check cancellation of the terms(1/ε, µ).

Introduce gluon corrections to quark loops and QED (and QCD)

final state interactions, as well as the two-electroweak-loop

corrections, calculated by other authors, in terms of

ᾱ, αs(mZ),mH ,mt ,mb.

Compare the predictions of the successive approximations

(Born, one loop, two loops) with the experimental data

on Z-decays. Perform the global fits formH ,mt , αs(mZ), ᾱ

for one and two loops. Derive theoretical predictions

of the central values for all electroweak observables
and of the corresponding uncertainties (‘errors’).

Check the sensitivity of the fits to the possible

existence of new heavy particles: extra generations,

SUSY, technicolour,Z′ etc.
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(3) From the analysis of the radiative corrections the mass of the top quark had been correctly
predicted before this particle was discovered at Tevatron.

(4) All electroweak observables (except for the mass of the higgs) are perfectly fitted by one-
loop electroweak corrections (with virtual and ‘free’ gluons being taken into account).

(5) The dependence of the radiative corrections on the mass of the higgs is feeble when the
higgs is heavy. Therefore the value of the higgs mass extracted from LEP-I and SLC
data has rather large error bars. Within one standard deviation, the central fitted value
of the higgs mass becomes smaller when the leading two-electroweak-loop corrections
are taken into account. In this case it is close to 90 GeV—its direct lower limit from the
LEP-II search. However the non-leading two-loop corrections may change this result.
Calculation of these corrections is a challenge to theorists. Better understanding of
the systematic discrepancies between various asymmetries inZ-decays is a challenge
to experimentalists.

(6) One of the main conclusions of the one-electroweak-loop case is that in this case the value
of the leading and non-leading corrections are comparable and even may cancel each other
(in the case of leptonic parity violating parametergVl/gAl).

(7) The remarkable agreement between the MSM and experimental data onZ-decays puts
strong limits on the hypothetical ‘new physics’, such as extra generations of heavy quarks
and leptons and/or properties of supersymmetric particles.

The discovery of the higgs, more precise measurements of the mass of theW boson at LEP-
II and Tevatron, and more accurate prediction of the value of electric charge at the scale ofmZ ,
may substantially improve the sensitivity of theZ-decay data to the possible manifestations
of the new physics.

We conclude this review with a flowchart summarizing the theoretical approach used by us.
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Appendix A. Regularization of Feynman integrals

Integrals corresponding to diagrams with loops formally diverge and thus need regularization.
Note that there does not yet exist a consistent regularization of electroweak theory in all loops.
A dimensional regularization can be used in the first several loops; this corresponds to a
transition to aD-dimensional spacetime in which the following finite expression is assigned
to the diverging integrals:∫

dD p

µD−4

(p2)s

(p2 + m2)α
= π

D
2

0( D
2 )

0( D
2 + s)0(α − D

2 − s)

0(α)

(m2)
D
2 −α+s

µD−4
, (A.1)

whereµ is a parameter with mass dimension, introduced to conserve the dimension of the
original integral.

This formula holds in the range of convergence of the integral. In the range of divergence,
a formal expression (A.1) is interpreted as the analytical continuation. Obviously, the integral
allows a shift in integration variable in the convergence range as well. Therefore, a shift
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p→ p + q for arbitrary D can also be done in (A.1). This factor is decisive in proving the
gauge invariance of dimensional regularization.

At D = 4, the integrals in (A.1) contain a pole term

1 = 2

4− D
+ log 4π − γ − log

m2

µ2
, (A.2)

whereγ = 0.577. . . is the Euler constant. Choice of constant terms in (A.2) is a matter of
convention.

The algebra ofγ -matrices in theD-dimensional space is defined by the relations

γµγν + γνγµ = 2gµν × I , (A.3)

gµµ = D, (A.4)

γµγνγµ = (2− D)γν, (A.5)

whereI is the identity matrix.
As for the dimensionality of spinors, different approaches can be chosen in the continuation

to theD-dimensional space. One possibility is to assume that theγ -matrices are 4×4 matrices,
so that

SpI = 4. (A.6)

TheD-dimensional regularization creates difficulties when one has to define the absolutely
antisymmetric tensor and (or)γ5 matrix. For calculations in several first loops, a formal
definition ofγ5,

γ5γµ + γµγ5 = 0, (A.7)

γ 2
5 = I (A.8)

does not lead to contradictions.
Thus, the amplitudes of physical processes, once they are expressed in terms of bare

charges and bare masses, contain pole terms∼1/(D − 4).
If we eliminate bare quantities and express some physical observables in terms of other

physical observables, then all pole terms cancel out. The general property of renormalizability
guarantees this cancellation. (We have verified this cancellation directly in [33].) The ‘five
steps’ described in section 4.6 are based on this renormalization procedure.

In order to avoid divergences in intermediate expressions, one can agree to subtract from
each Feynman integral the pole terms∼1/(4−D), since they will cancel out anyway in the final
expressions. Depending on which constant terms (in addition to pole terms) are subtracted from
the diagrams, different subtraction schemes arise: theMSscheme corresponds to subtracting
the universal combination

2

4− D
− γ + log 4π.

Appendix B. Relation betweenᾱ andα(0)

We begin with the following well known relation of quantum electrodynamics [77]:

α(q2) = α(0)

1 +6γ (q2)/q2−6′γ (0)
. (B.1)

Here the fine structure constantα ≡ α(0) is a physical quantity. It can be measured as
a residue of the Coulomb pole 1/q2 in the scattering amplitude of charged particles. As for
the running coupling constantα(q2), it can be measured from the scattering of particles with



Theory of Z boson decays 45

large massesm at low momentum transfer:m�
√
|q2|. In the SM we have theZ boson, and

the contribution of the photon cannot be identified unambiguously ifq2 6= 0. Therefore, the
definition of the running constantα(q2) becomes dependent on convention and on details of
calculations.

At q2 = m2
Z , the contribution ofW bosons tōα ≡ α(m2

Z) is not large, so it is convenient
to make use of the definition accepted in QED:

ᾱ = α

1− δα , (B.2)

where
δα = −5γ (m

2
Z) +6′γ (0),

5γ (m
2
Z) =

1

m2
Z

6γ (m
2
Z).

(B.3)

The one-loop expression for the self-energy of the photon can be rewritten as [78]:

6γ (s) = (α/3π)
∑

f

N f
c Q2

f [s1 f + (s + 2m2
f )F(s,mf ,mf )− s/3]

−(α/4π)[3s1W + (3s + 4m2
W)F(s,mW,mW)], (B.4)

where s ≡ q2, the subscriptf denotes fermions, the sum6 f runs through lepton and
quark flavours, andN f

c is the number of colours. The contribution of fermions to6γ (q2)

is independent of gauge. The last term in (B.4) refers to the gauge-dependent contribution of
W bosons; the ’t Hooft–Feynman gauge was used in equation (B.4).

The singular term1i is:

1i = 1

ε
− γ + log 4π − log

m2
i

µ2
, (B.5)

where 2ε = 4−D (D is the variable dimension of spacetime,ε → 0),γ = −0′(1) = 0.577. . .
is the Euler constant andµ is an arbitrary parameter. Both 1/ε andµ vanish in relations between
observables.

The functionF(s,m1,m2) is defined by the contribution to self-energy of a scalar particle
at q2 = s, owing to a loop with two scalar particles (with massesm1 andm2) and with the
coupling constant equal to unity:

F(s,m1,m2) = −1 +
m2

1 + m2
2

m2
1−m2

2

log
m1

m2
−
∫ 1

0
dx log

x2s− x(s + m2
1−m2

2) + m2
1− iε

m1m2
.

(B.6)

The functionF is normalized in such a way that it vanishes atq2 = 0, which corresponds to
subtracting the self-energy atq2 = 0:

F(0,m1,m2) = 0. (B.7)

The following formula holds form1 = m2 = m:

F(s,m,m) ≡ F(τ ) =


2

[
1−√4τ − 1 arcsin

1√
4τ

]
, 4τ > 1,

2

[
1−√1− 4τ log

1 +
√

1− 4τ√
4τ

]
, 4τ < 1,

(B.8)

whereτ = m2/s.
Let us present the following useful equality which holds forF(τ ) derivative:

F ′(τ ) ≡ −τ d

dτ
F(τ ) = 1− 2τ F(τ )

4τ − 1
. (B.9)
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To calculate the contributions of light fermions, thet quark and theW boson toδα, we
need the asymptoticsF(τ ) for small and largeτ :

F(τ ) ' logτ + 2 + · · · , |τ | � 1, (B.10)

F(τ ) ' 1

6τ
+

1

60τ 2
+ · · · , |τ | � 1. (B.11)

As a result we obtain

5γ (m
2
Z) ≡

6γ (m2
Z)

m2
Z

= α

3π

∑
8

N f
c Q2

f

(
1Z +

5

3

)
+
α

π
Q2

f

[
1t + (1 + 2t)F(t)− 1

3

]
− α

4π
[31W + (3 + 4c2)F(c2)], (B.12)

wheret = m2
t /m2

Z , and

6′γ (0) =
α

3π

∑
9

N f
c Q2

f1 f − α

4π

(
31W +

2

3

)
, (B.13)

δα = α

π

{∑
8

N f
c Q2

f

3

(
log

m2
Z

m2
f

− 5

3

)
− Q2

t

[
(1 + 2t)F(t)− 1

3

]
+

[(
3

4
+ c2

)
F(c2)− 1

6

]}
.

(B.14)

Therefore,δα is found as a sum of four terms,

δα = δαl + δαh + δαt + δαW. (B.15)

In the one-loop approximation:

δαl = α

3π

∑
3

[
log

m2
Z

m2
l

− 5

3

]
= 0.031 41. (B.16)

Higher loops [28] give:

δαl = 0.031 498. (B.17)

Loops with top quarks give:

δαt ' −α
π

4

45

(
mZ

Mt

)2

= −0.000 05(1), (B.18)

where we have used thatmt = 175± 10 GeV. Note thatδαt is negligible and has the
antiscreening sign (the screening of thet quark loops in QED begins atq2 � m2

t , while
in our caseq2 = m2

Z < m2
t ).

Finally, theW-loop gives

δαW = α

2π

[
(3 + 4c2)

(
1−

√
4c2− 1 arcsin

1

2c

)
− 1

3

]
= 0.000 50. (B.19)

The value ofδαW depends on gauge [79]; here we give the result of calculations in the ’t Hooft–
Feynman gauge. Traditionally, the definition ofᾱ takes into account the contributions of leptons
and five light quarks only. The termsδαt andδαW are taken into account in the electroweak
radiative corrections. In our approach, these terms give the correctionsδ1Vi . In the same way
the loops of not yet discovered heavy new particles (‘new physics’) should be accounted for.
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Appendix C. How αW (q2) andαZ(q2) ‘crawl’

The effect of ‘running’ of electromagnetic coupling constantsα(q2) (logarithmic dependence
of the effective charge on momentum transferq2) has been known for more than four decades
[77]. In contrast toα(q2), the effective constants ofW andZ bosonsαW(q2) andαZ(q2) in
the region 0< q2 . m2

Z ‘crawl’ rather than run [80].
If we define the effective gauge coupling constantg2(q2) in terms of the bare chargeg2

0
and the bare massm0, and sum up the geometric series with the self-energy6(q2) inserted in
the gauge boson propagator, this gives the expression

g2(q2) = g2
0

1 + g2
0
6(q2)−6(m2)

q2−m2

. (C.1)

Herem is the physical mass, and6(q2) contains the contribution of fermions only, since loops
with W, Z andH bosons do not contain large logarithms in the region|q2| 6 m2

Z .
The bare coupling constant in the difference 1/g2(q2) − 1/g2(0) is eliminated, which

gives a finite expression. The result is

1/αZ(q
2)− 1/αZ(0) = bZ F(x), where x = q2/m2

Z, (C.2)

1/αW(q
2)− 1/αW(0) = bW F(y), where y = q2/m2

Z, (C.3)

F(x) = x

1− x
log |x|. (C.4)

If x � 1, equations (C.2) and (C.3) define the logarithmic running of charges owing to
leptons and quarks, andbZ andbW represent the contribution of fermions to the first coefficient
of the Gell-Mann–Low function:

bZ = 1

48π

{
Nu3

[
1 +

(
1− 8

3
s2

)2
]

+Nd3

[
1+

(
−1 +

4

3
s2

)2
]

+Nl [2 + (1 + (1− 4s2)2)]

}
,

(C.5)

bW = 1

16π
[6Nq + 2Nl ],

whereNu,d,q,l are the numbers of quarks and leptons with masses that are considerably lower
than

√
q2.

Forq2 . m2
Z , the numerical values of the coefficientsbZ,W are [80]:

bZ ' 0.195 bW ' 0.239.

The massive propagator1
q2−m2 in (C.1) greatly suppresses the running ofαW(q2) andαZ(q2).

Thus, according to (C.2) and (C.3), the constantαZ(q2) grows by 0.85% fromq2 = 0 to
q2 = m2

Z ,

1/αZ(m
2
Z) = 22.905

1/αZ(m
2
Z)− 1/αZ(0) = −0.195,

(C.6)

and the constantαW(q2) grows by 0.95%,

1/αW(m
2
Z) = 28.74

1/αW(m
2
Z)− 1/αW(0) = −0.272,

(C.7)

while the electromagnetic constantα(q2) increases by 6.34%:

1/α(m2
Z)− 1/αW(0) = 128.90− 137.04= −8.14. (C.8)
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With the accuracy indicated above, we can thus assume

αZ(m
2
Z) ' αZ(0)

αW(m
2
Z) ' αW(0).

(C.9)

At the same time,α(m2
Z) differs greatly fromα(0); therefore the latter has no connection

to the electroweak physics but only to the purely electromagnetic physics.

Appendix D. General expressions for one-loop corrections to hadronless observables

The bare quantities are marked by the subscript ‘0’. In the electroweak theory, three bare
chargese0, f0 and g0 that describe the interactions ofγ , Z and W are related by a single
constraint:

(e0/g0)
2 + (g0/ f0)

2 = 1. (D.1)

The bare masses of the vector bosons are defined by the bare VEV of the higgs fieldη:

mZ0 = 1
2 f0η, mW0 = 1

2g0η. (D.2)

The fine structure constantα = e2/4π is related to the bare chargee0 by the formula

α ≡ α(q2 = 0) = e2
0

4π

(
1−6′γ (0)− 2

s

c

6γ Z(0)

m2
Z

)
, (D.3)

where6′(0) = limq2→06(q2)/q2. In the Feynman gauge6γ Z(0) ≈ −(α/2π)(m2
W/cs)(1/ε),

where the dimension of spacetime isD = 4− 2ε. In the unitary gauge6γ Z(0) = 0.
The simplest way to verify the presence of the term 2(s/c)6γ Z(0)/m2

Z is by considering
the interaction of a photon with the right-handed electroneR. Note that in this case there are no
weak vertex corrections due to theW boson exchange. (Note also, that the left-handed neutrino
remains neutral even when loop corrections are taken into account, since the diagram with the
γ − Z − νL ν̄L interaction is compensated for by the vertex diagram with theW-exchange.)

The relation between̄α = α(q2 = m2
Z) andα0 has the following form:

ᾱ = α0

[
1− 5̃γ (m

2
Z)−6′γ (0) + 6̃′γ (0)− 2

s

c
5γ Z(0)

]
, (D.4)

where 5̃γ (q2) = 6̃γ (q2)/m2
Z , 5γ Z(q2) = 6γ Z(q2)/m2

Z , while 6̃γ mean that the
contributions of theW boson andt quark are not accounted for. It is convenient to introduce
in (D.4) explicit expression forδαW + δαt :

ᾱ = α0

[
1−5γ (m

2
Z)− 2

s

c
5γ Z(0)− δαW − δαt

]
, (D.5)

where in accordance with equation (B.3)

δαW + δαt = 5̃γ (m
2
Z)−5γ (m

2
Z) +6′γ (0)− 6̃′γ (0). (D.6)

In the case of ‘new physics’ one should add to equation (D.5) the termδαN P. Our first
basic equation is equation (D.5).

The second basic equation is:

m2
Z = m2

Z0[1−5Z(m
2
Z)] = m2

W0/c
2
0[1−5Z(m

2
Z)]. (D.7)

A similar equation holds form2
W:

m2
W = m2

W0[1−5W(m
2
W)], (D.8)

where5i (q2) = 6i (q2)/m2
i , i = W, Z.
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Finally, the third basic equation is

Gµ = g2
0

4
√

2m2
W0

[1 +5W(0) + D], (D.9)

where5W(0) = 6W(0)/m2
W comes from the propagator ofW, while D is the contribution of

the box and the vertex diagrams (minus the electromagnetic corrections to the four-fermion
interaction) to the muon decay amplitude. According to Sirlin [81],

D = ᾱ

4πs2

(
6 +

7− 4s2

2s2
logc2 + 41W

)
, (D.10)

where

1W ≡ 1(mW) = 2

4− D
+ log 4π − γ − log(m2

W/µ
2). (D.11)

Now we are able to expressf0 andg0 in terms ofᾱ, Gµ, mZ and the loop corrections.
From (D.2), (D.7) and (D.9) we obtain:

f 2
0 = 4

√
2Gµm2

Z [1−5W(0) +5Z(m
2
Z)− D]. (D.12)

From (D.1), (D.5) and (D.12) we get:

c0 ≡ g0

f0
= c

[
1 +

s2

2(c2− s2)

×
(
− 2

s

c
5γ Z(0)−5γ (m

2
Z)− δαW − δαt +5Z(m

2
Z)−5W(0)− D

)]
.

(D.13)

The next step is to expressmW/mZ , gA andgV throughc, s and loop corrections. Let us
start withmW/mZ . From (D.8) and (D.7) we get:

mW/mZ = c0[1− 1
25W(m

2
W) + 1

25Z(m
2
Z)]. (D.14)

Substitutingc0 given by (D.13) we obtain:

mW

mZ
= c +

cs2

2(c2− s2)

(
c2

s2
[5Z(m

2
Z)−5W(m

2
W)] + 5W(m

2
W)−5W(0)−5γ (m

2
Z)

−2
s

c
5γ Z(0)− D − δαW − δαt

)
. (D.15)

In order to obtain expression forgA we should recall that it is proportional tof0 and take
into account theZ boson wavefunction renormalization andZl̄l vertex loop correction:

gA = − 1
2 − 1

4[5Z(m
2
Z)−5W(0)− D −6′Z(m2

Z)− 8csFA], (D.16)

whereFA originates from the vertex correction.
The last quantity is the ratiogV/gA. One-loop corrections come froms2

0 ≡ 1 − c2
0

(equation (D.13)), from vector and axialZl̄l vertices and fromZ → γ transition which
contributes togV only:

gV

gA
= 1− 4s2− 4c2s2

c2− s2

[
2

s

c
5γ Z(0) +5γ (m

2
Z) + δαW + δαt −5Z(m

2
Z) +5W(0) + D

]
−4csFV + 4csFA(1− 4s2)− 4cs5γ Z(m

2
Z). (D.17)

Formulae (D.15)–(D.17) are derived in this appendix according to the ‘five steps’
procedure described in section 4.6. They describe finite one-loop corrections to hadronless
observables.
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It is easy to evaluate the contribution oft quark to physical observables in the
approximation∼αWm2

t . In this approximation5W(m2
W) = 5W(0), 5Z(m2

Z) = 5Z(0),
5Z(0)−5W(0) = 3ᾱ/16πs2c2t and from equations (D.15)–(D.17) we get:

mW

mZ
≈ c +

3ᾱc

32π(c2− s2)s2
t, (D.18)

gA ≈ −1

2

(
1 +

3ᾱ

32πs2c2
t

)
, (D.19)

gV

gA
≈ 1− 4s2 +

3ᾱ

4π(c2− s2)
t. (D.20)

The corrections proportional tom2
t were first pointed out by Veltman [37], who emphasized

the appearance of such corrections for a large differencem2
t −m2

b which violates the isotopic
symmetry. In this review the coefficients in front of the factorst in equations (D.18)–(D.20)
are used as coefficients for normalized radiative correctionsVi (see sections 4.2 and 4.3).

Appendix E. RadiatorsRAq andRV q

For decays to light quarksq = u,d, s, we neglect the quark masses and take into account the
gluon exchanges in the final state up to terms∼α3

s [82–85], and also one-photon exchange
in the final state and the interference of the photon and the gluon exchanges [86]. These
corrections are slightly different for the vector and the axial channels.

For decays to quarks we have

0q = 0(Z→ qq̄) = 12[g2
AqRAq + g2

V qRV q]00 (E.1)

where the factorsRA,V are responsible for the interaction in the final state. According to
[82–85]:

RV q = 1 +
α̂s

π
+

3

4
Q2

q

ᾱ

π
− 1

4
Q2

q

ᾱ

π

α̂s

π
+

[
1.409 +(0.065 + 0.015 logt)

1

t

](
α̂s

π

)2

−12.77

(
α̂s

π

)3

+ 12
m̂2

q

m2
Z

α̂s

π
δvm (E.2)

RAq = RV q − (2T3q)

[
I2(t)

(
α̂s

π

)2

+ I3(t)

(
α̂s

π

)3
]

−12
m̂2

q

m2
Z

α̂s

π
δvm − 6

m̂2
q

m2
Z

δ1
am− 10

m̂2
q

m2
t

(
α̂s

π

)2

δ2
am, (E.3)

wherem̂q is the running quark mass (see below),

δvm = 1 + 8.7

(
α̂s

π

)
+ 45.15

(
α̂s

π

)2

, (E.4)

δ1
am = 1 + 3.67

(
α̂s

π

)
+ (11.29− log t)

(
α̂s

π

)2

, (E.5)

δ2
am =

8

81
+

log t

54
, (E.6)

I2(t) = −3.083− log t +
0.086

t
+

0.013

t2
, (E.7)

I3(t) = −15.988− 3.722 logt + 1.917 log2 t, (E.8)

t = m2
t /m2

Z .
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Terms of the order of(α̂s/π)
3 caused by the diagrams with three gluons in intermediate state

were calculated in [85]. ForRV q they are numerically very small,∼10−5; for this reason, we
dropped them from formula (E.2).

For theZ→ bb̄ decay, theb quark mass is not negligible; it reduces0b by about 1 MeV
(∼0.5%). The gluon corrections result in a replacement of the pole massmb ' 4.7 GeV by
the running mass atq2 = m2

Z : mb→ m̂b(mZ). We expresŝmb(mZ) in terms ofmb, α̂s(mZ)

andα̂s(mb) using standard two-loop equations in theMSscheme (see [36]).
For the Z → cc̄ decay, the running masŝmc(mZ) is of the order of 0.8 GeV and the

corresponding contribution to0c is of the order of 0.05 MeV. We have included this tiny term
in theLEPTOP code, since it is taken into account in other codes (see, for example, [20]).

We need to remark in connection with0c that the termI2(t), given by equation (E.7),
contains interference terms∼(α̂s/π)

2. These terms are related to three types of final states:
one quark pair, a quark pair and a gluon, two quark pairs. This last contribution comes to
about 5% ofI2 and is below the currently achievable experimental accuracy. Nevertheless,
in principle these terms require special consideration, especially if these quark pairs are of
different flavours, for example,bb̄cc̄. Such mixed quark pairs must be discussed separately.

Note thatα̂s stands for the strong interaction constant in theMSsubtraction scheme, with
µ2 = m2

Z .

Appendix F. α2
Wt

2 corrections from reducible diagrams

In [33], when deriving equations for physical observables we systematically took into
account corrections which contained first power of polarization operators and neglected terms
∼(5W,Z)

2. This procedure was correct at one loop, but since5W,Z contain terms of the order
of αWt we evidently lostα2

Wt2 terms. To restore them let us repeat the procedure implemented
in [33] this time taking squares of5W and5Z (reducible two-loop diagrams) into account.

Our starting point are three basic equations for quantitiesmZ , Gµ andᾱ = α(m2
Z). Since

terms∼αWt are absent in5γ , 5γ Z andD functions, we will not consider these functions in
this section. Equation formZ is the same as in appendix D, equations (D.7), (D.2):

m2
Z = 1

4 f 2
0 η

2[1−5Z(m
2
Z)], (F.1)

while for Gµ we have:

Gµ = g2
0√

2g2
0η

2[1−5W(0)]
= 1√

2η2(1−5W(0)]
, (F.2)

and we keep5W(0) in the denominator to avoid losing the52
W(0) term (compare with

equation (D.9)). From these two equations we get:

f 2
0 = 4

√
2Gµm2

Z

1−5W(0)

1−5Z(m2
Z)
= 4
√

2Gµm2
Z

1−5W(0)

1−5Z(0)
, (F.3)

where we use equality5Z(m2
Z) = 5Z(0) which is valid for the leading term∼αWt .

Finally, dividing the equation for the running electromagnetic coupling constant, which
in our approximation is simply

e2(m2
Z) = 4πᾱ = g2

0

(
1− g2

0

f 2
0

)
(F.4)

by (F.3), we obtain:

g2
0

f 2
0

(
1− g2

0

f 2
0

)
= πᾱ√

2Gµm2
Z

[1− δ], (F.5)
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δ ≡ 1− 1−5Z(0)

1−5W(0)
= 5Z(0)−5W(0)

1−5W(0)
. (F.6)

Consideringδ as a small parameter and solving equation (F.5) perturbatively, we get:

g2
0

f 2
0

= c2

[
1 +

s2

c2− s2
δ − c2s4

(c2− s2)3
δ2

]
, (F.7)

where we keep terms linear and quadratic inδ. For definitions ofc ands see equation (23).
Our next step should be the calculation of theδ2 corrections to the functionsVi . But first let

us discuss the expression forδ as given by equation (F.6) which contains the factor 1−5W(0)
in the denominator. At one loop, corrections proportional toδ appear in physical observables.
They should be carefully calculated in order not to induce extraα2

Wt2 terms. Fortunately, this
can be done straightforwardly, using the following chains of equalities:

5Z(0) ≡ 4

f 2
0 η

2
f 2
0 [6Z(0)/ f 2

0 ] = 4
√

2Gµ(1−5W(0))[6Z(0)/ f 2
0 ], (F.8)

5W(0) ≡ 4

g2
0η

2
g2

0[6W(0)/g
2
0] = 4

√
2Gµ(1−5W(0))[6W(0)/g

2
0], (F.9)

where expressions in square brackets contain self-energieswithoutcoupling constants (6Z/ f 2
0

and6W/g2
0, respectively) and equation (F.2) is used to expressη throughGµ. Substituting

equations (F.8) and (F.9) into (F.6) we get:

δ = 4
√

2Gµ[6Z(0)/ f 2
0 −6W(0)/g

2
0] = 4

√
2Gµm2

Z

[6Z(0)/ f 2
0 −6W(0)/g2

0]

m2
Z

= 3ᾱ

16πs2c2

(
mt

mZ

)2

. (F.10)

Now everything is prepared for the calculation ofδ2 corrections to physical observables.
Let us start from theW boson mass. For the ratio of the squares of vector boson masses we
have:

m2
W

m2
Z

= g2
0

f 2
0

1−5W(m2
W)

1−5Z(m2
Z)
. (F.11)

Taking the ratio of bare coupling constants from equation (F.7) we get:

mW

mZ
= c

√
1−5W(0)

1−5Z(0)

[
1 +

s2

2(c2− s2)
δ +

s6− 5s4c2

(c2− s2)3

δ2

8

]
. (F.12)

It is easy to see that:√
1−5W(0)

1−5Z(0)
= 1√

1−5Z(0)
1−5W(0)

= 1√
1− δ . (F.13)

The resulting formula for the correction to the ratiomW/mZ is presented in section 7.1.
The next step is the correction to the axial coupling of theZ boson to charged leptons.

Axial coupling is proportional tof0, and from equations (F.3) and (F.13) we immediately
obtain:

f0 ∼ 1√
1− δ = 1 +

1

2
δ +

3

8
δ2. (F.14)

The final formula for the correction togAl is presented in section 7.1.
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For the ratio of vector to axial constants in our approximation we have:

gVl/gAl = 1− 4s2
0 = 1− 4

(
1− g2

0

f 2
0

)
. (F.15)

The expression for the correction togVl/gAl through physical parameters is presented in
section 7.1 as well.

Appendix G. Oblique corrections from new generations and SUSY

In this appendix we collect analytical formulae for different oblique corrections.
For the degenerate case the contribution of additional quark and lepton toδ4Vi are given

by ([63]):

δ4Vm = 4
9 Nc{[(1− l )F(l )− (1− l/c2)F(l/c2)] + 2s2[(1− l/c2)F(l/c2)

−(1 + 2l )F(l )] + 4s4(Q2
U + Q2

D)[(1 + 2l )F(l )− 1
3]} (G.1)

δ4VA = 4
9 Nc{[1− l + (6l 2− 3l )F(l )]

+[4s4(Q2
U + Q2

D)− 2s2][2l + 1− 12l 2F(l )]}/(1− 4l ), (G.2)

δ4VR = − 4
9 Nc{3l F (l )− 4s2c2(Q2

U + Q2
D)[(1 + 2l )F(l )− 1

3]}, (G.3)

whereNc = 3, QU = 2
3, QD = − 1

3 for quark doublet;Nc = 1, QU = 0, QD = −1 for lepton
doublet;

` = m2
Q/m2

Z for quarks, ` = m2
L/m2

Z for leptons,

and the functionF(l ) is defined in appendix B, equations (B8), (B.10).
For different up and down quark (and lepton) masses analytical expressions forδ4Vi are

given by

1

n
δ4Vm =

(
64

27
s4− 16

9
s2

)[
(1 + 2u)F(u) + (1 + 2d)F(d)− 2

3

]
+

8

9

[
(1− u)F(u) + (1− d)F(d)− 2

3

]
+

4

3

s2

c2

[
u + d − 2ud

u− d
log

u

d

]
+

8

9

(
1− s2

c2

)[
u− d

2
log

u

d
+ (u + d) +

(
c2− u + d

2

)
u + d

u− d
log

u

d
− 4

3
c2

−
(

2c2− u− d − (u− d)2

c2

)
F(m2

W,m
2
U ,m

2
D)

]
; (G.4)

1

n
δ4VA = 4

9

{(
16

3
s4− 4s2− 1

)
[2uF(u)− (1 + 2u)F ′(u) + 2d F(d)− (1 + 2d)F ′(d)]

+3

[
u + d − 2ud

u− d
log

u

d
− F ′(u)− F ′(d)

]}
; (G.5)

1

n
δ4VR = −8

3

[
uF(u) + d F(d) +

ud

u− d
log

u

d
− u + d

2

]
+

64

27
s2c2

[
(1 + 2u)F(u) + (1 + 2d)F(d)− 2

3

]
, (G.6)

wheren is the number of generations andmN = mU , mE = mD, u = m2
U/m2

Z , d = m2
D/m2

Z ;
F ′(u) = −u(d/du)F(u) andF(s,m2

1,m
2
2) is defined in appendix B, equation (B.6).
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The formulae that describe the enhanced SUSY corrections to the functionsVi have the
following form [72]:

δL R
SU SYVA = 1

m2
Z

[c2
ug(m1,mb̃) + s2

ug(m2,mb̃)− c2
us2

ug(m1,m2)], (G.7)

δL R
SU SYVR = δL R

SU SYVA +
1

3
YL

[
c2

u log

(
m2

1

m2
b̃

)
+ s2

u log

(
m2

2

m2
b̃

)]
− 1

3
c2

us2
uh(m1,m2), (G.8)

δL R
SU SYVm = δL R

SU SYVA +
2

3
YLs2

[
c2

u log

(
m2

1

m2
b̃

)
+ s2

u log

(
m2

2

m2
b̃

)]

+
c2− s2

3
[c2

uh(m1,mb̃) + s2
uh(m2,mb̃)] −

c2
us2

u

3
h(m1,m2), (G.9)

where

g(m1,m2) = m2
1 + m2

2− 2
m2

1m2
2

m2
1−m2

2

log

(
m2

1

m2
2

)
, (G.10)

h(m1,m2) = −5

3
+

4m2
1m2

2

(m2
1−m2

2)
2

+

(m2
1 + m2

2)(m
4
1− 4m2

1m2
2 + m4

2)

(m2
1−m2

2)
3

log

(
m2

1

m2
2

)
, (G.11)

andYL = Qt + Qb = 1
3 is the hypercharge of the left doublet.

Appendix H. Other parametrizations of radiative corrections

Here we present formulae which connect our functionsVi with two other sets of parameters
widely used in the literature to describe electroweak radiative corrections. All formulae of this
appendix are valid at one-electroweak-loop approximation.

A set of three parametersε1, ε2, ε3 has been suggested by Altarelli, Barbieri and Jadach [87]
for the phenomenological analysis of new physics:

ε1 = 1ρ, (H.1)

ε2 = c21ρ +
s2

c2− s2
1rW − 2s21k′, (H.2)

ε3 = c21ρ + (c2− s2)1k′, (H.3)

where1ρ describes the correction togA,1k′ to gV and1rW to mW/mZ :

gA = − 1
2(1 + 1

21ρ), (H.4)

gV/gA = 1− 4s2(1 +1k′), (H.5)

mW/mZ = c[1− s21rW/2(c
2− s2)]. (H.6)

By comparing these definitions with the definitions ofVA, VR andVm we obtain:

1ρ = 3ᾱ

16π

VA

s2c2
, (H.7)

1k′ = − 3ᾱ

16π

VR

(c2− s2)s2
, (H.8)

1rW = − 3ᾱ

16π

Vm

s4
. (H.9)
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Hence:

ε1 = 3ᾱ

16πs2c2
VA, (H.10)

ε2 = 3ᾱ

16π(c2− s2)s2
[(VA − Vm)− 2s2(VA − VR)], (H.11)

ε3 = 3ᾱ

16πs2
(VA − VR). (H.12)

As is evident from the last two formulae, the virtue ofε2 andε3 is that they do not contain
the termt . So, at the time whent quark mass was not measured at Tevatron the corresponding
uncertainties inε2 andε3 were diminished.

Another set of parameters,S, T , U was introduced a few years earlier by Peskin and
Takeuchi [88]. These parameters were proposed to describe only the so-called oblique
corrections due to the physics beyond the SM. Using the definitions ofS, T , U from [88]
and designating new physics contributions toεi asδεi we obtain:

δε1 = ᾱT, (H.13)

δε2 = −ᾱU/4s2, (H.14)

δε3 = ᾱS/4s2. (H.15)

From (H.10)–(H.12) we get:

T = 3

16πs2c2
δVA, (H.16)

U = − 3

4π(c2− s2)
[(δVA − δVm)− 2s2(δVA − δVR)], (H.17)

S= 3

4π
(δVA − δVR), (H.18)

whereδVi are new physics contributions toVi .
According to [88]

S= 16π [6′33(0)−6′3Q(0)] = 16π [6′A(0)−6′V (0)], (H.19)

T = 4π

s2m2
W

[611(0)−633(0)], (H.20)

U = 16π [6′11(0)−6′3(0)], (H.21)

where6′(0) = d6(q2)/dq2|q2=0 and6 are defined by the corresponding currents (isotopic,
1 and 3, and electromagnetic,Q, vector, V , and axial,A) with coupling constants being
extracted. ThusScharacterizes the degree of chiral symmetry breaking, andT andU that of
isotopic symmetry. Note that in equations (H.19)–(H.21) only the contribution of new physics
should be considered. Since new particles should be heavy it is reasonable to take into account
only values of self-energies atq2 = 0 and their first derivatives (higher derivatives are power
suppressed) [88]. Altogether we have eight parameters (6W W(0), 6Z Z(0), 6γ Z(0), 6γγ (0),
6′W W(0), 6

′
Z Z(0), 6

′
Zγ (0), 6

′
γ γ (0)), two of which are equal to zero (6γγ (0) and6γ Z(0)),

while three combinations can be absorbed in the definition ofα, Gµ andmZ . The remaining
three combinations enterS, T andU (or δεi , i = 1,2,3).
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[45] Chetyrkin K G, Kühn J H and Steinhauser M 1995Phys. Lett.B 351331
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