

Cars Cres

CHARACIERIZATION OF INFRARED DETECTORS FOR THE EUCLID MISP INSTRUMENT

B.Serra – Centre de Physique des Particules de Marseille

Journées Scientifiques de l'Ecole Doctorale – ED352 – 28, 29 mai 2015

An artist view of the Euclid satellite – © ESA

Euclid is a wide-field mission for the cartography of the dark Universe lead by European Space Agency (ESA) and the Euclid Consortium that is to launch on 2020. This mission was selected within the Cosmic Vision program and aims at bringing more understanding on the nature of the recent acceleration of the expansion of the Universe and the possible related nature of dark matter and dark energy.

Weak Lensing (WL): shape of Big-Bang galaxies

High quality imager & photometry

Method - Multi cosmological probes

High precision measurements <1%</p>

ution of the T

Euclid survey

\sim 15,000 deg² over 6 years ■ 10s of millions of galaxies \Rightarrow z between 0.9 and 2.0

The Universe

Baryonic Acoustic Now Oscillations (BAO): distribution of galaxies

Spectroscopy: detection of H α line

Frequent calibration

Control of systematics

Detailed *a priori* knowledge of instruments

A 9 to 2.0µm $FoV=0.55 deg^2$

Photometer Y, J, H filters 0.3 arcsec/pixel MACC(3/4, 16, xx)100s exposure

Slitless spectrometer 3 red and 1 blue grisms $2.10^{-16} \text{ erg/cm}^2/\text{pix}$ MACC(15, 16, 13)560s exposure

Characterization

NISP IR H2RG detectors

- 16 detectors in the FPA
- ► 2048x2048 hybrid pixels
- 18µm pitch / 2.3µm cut-off
- Provided by Teledyne Imaging Sensors under ESA/NASA contract

Readout strategy – Non destructive MACC

3 groups of 5 frames Average down are recorded readout noise **Detection of** cosmic rays **Ⅲ→**time

knowledge of system behavior

Limited telemetry • Transfer of slopes and error • Need for characterization

H2RG : Hawaii 2kx2k with Reference pixels & Guide mode

The technology for infrared detection that is used for H2RG detectors is 20 years old. With improvement of performances, and feedback from experiences, new effects have been discovered and need to be studied :

Persistence creates an afterglow after bright illuminations (like high energy cosmics of bright stars)

Cosmics induce an offset on the signal. At the L2 point flux of $\sim 5/\text{cm}^2/\text{s}$.

The characterization facilities at CPPM are equipped with a test cryostat that has been used to study these effects.

Persistence

Impact on acquisitions

- Charges trapped during acquisition in non-depleted regions
- Charges liberated during next acquisition
- Creation of a persistent pattern that can be seen on following exposures.

Traps below the lines representing the Space Charged Region (SCR) contribute to persistence signal

Cosmic rays

Impact on acquisitions

Creating an offset in the ramp that can saturate the pixel

7000		Simulated ramp						%
6500	$\begin{array}{l} \text{Simulated signal:} \\ F_{simu} = 1 \text{ ADU/f} \\ \sigma_{read} = 10 \text{ ADU} \\ \text{Coadded groups } g_i \text{M} \end{array}$	1ACC(30,16,11)				₩~~~▼	0	96.75 %
							1	3.19~%
5000		man man	p.J				2	0.06~%
4500							3	$6.10^{-4}\%$
40 35 30 25 20 15 10 5		Δ(Simulated s	Time [s] iignal) 1500 500 0 -500 -1000 -1500		Δ(Δ(Simulat	ed signal))	Number of estimated of point durin exposure (~~	f impacts at the L2 g spectro. 560s)

Correction algorithm

• Compute a χ^2 and P-value P-value : $\chi^{2} = \sum_{i=0}^{N_{groups}-1} (g_{i+1} - g_{i} - F_{fit})^{2} / (F_{fit} + \frac{2\sigma_{read}^{2}}{N_{frames}})^{2}$ Value used to validate an hypothesis to be verified \blacksquare Compute a temporary χ^2 <u>In our case :</u> Signal can be described second derivative of with a linear fit signal (fitting 0 slope), to Readout errors are not deviations caused by Correlated see cosmics. A priori information : Compute the original χ^2 and Estimation of the readout P-value without impacted errors for all pixels groups

 $P_{value raw} < 0.01$ $P_{value corr} > 0.01$ **Cosmic selected with criteria :**

Conclusions

adds correlation

Adding an error component to the χ^2

« If a ramp can not be fitted as a linear signal before the correction but can be after, then it is a cosmic »

