Développement d’un cristal « scintronique » pour les applications d’imagerie ultra-rapide de rayons gamma

Stage numéro : Doctorat-1922-IM-01
Laboratoire :Centre de Physique des Particules de Marseille Case 902
 163 avenue de Luminy - 13288 Marseille Cedex 9
Directeur :Cristinel Diaconu - 04.91.82.72.01 - diaconu@cppm.in2p3.fr
Correspondant :William Gillard - 04.91.82.72.67 - gillard@cppm.in2p3.fr
Groupe d'accueil :imXgam
Chef de groupe :Christian Morel - 04.91.82.76.73 - morel@cppm.in2p3.fr
Directeur de thèse :Christian Morel - 0491827673 - morel@cppm.in2p3.fr - - - -

Thématique : Instrumentation

Le projet ClearMind a pour but de développer un détecteur monolithique de rayons gamma (0.5 MeV à quelques MeV) de grande surface (<= 25 cm2), de grande efficacité et de hautes résolutions spatiale (< 4 mm3 FWHM) et temporelle (< 20 ps FWHM) dans le but d’améliorer les performances des tomographes à émission de positons à temps-de-vol (TOF-TEP), mais aussi la réalisation de caméras Compton innovantes utilisées comme gamma-caméras pour l’imagerie des gammas prompts en hadronthérapie et de la radioactivité lors d’opérations de démantèlement nucléaire.

Ce détecteur sensible à la position est constitué d’un cristal scintillant sur lequel est directement déposée une couche photoélectrique d’indice de réfraction supérieur à celui du cristal. Ce cristal « scintronique », qui allie scintillation et génération de photoélectrons, permet d’optimiser la transmission des photons de scintillation et des photons de lumière Cherenkov à la couche photoélectrique. Par rapport aux montages classiques, un gain d’un facteur 4 sur la probabilité de transmission des photons optiques entre le cristal et la couche photoélectrique est attendu. Le cristal sera encapsulé avec un tube multiplicateur à galette de micro-canaux (MCP-MT) afin d’amplifier le signal et d’optimiser le temps de transit des photoélectrons vers le plan d’anodes de détection (densément pixélisé) et ainsi les résolutions temporelle et spatiale de la chaîne de détection. L'objectif de la thèse est de participer au développement et à la caractérisation de ce module de détection en collaboration avec l'IRFU à Saclay, de le modéliser avec l'outil de simulation Monte Carlo GATE dans le but d'évaluer l'impact de cette nouvelle approche sur les performances d'un imageur TOF-TEP, et à terme corps entier.