Prochains séminaires


17 juin 2019
De l’interaction laser-matière aux procédés laser
Philippe Delaporte (LP3)
Voir détails Cacher détails
Description :

De 1960, date de la réalisation du premier laser par Theodore Maiman, au prix Nobel de Physique 2018 attribué à Gérard Mourou et Donna Strickland, les lasers ont révolutionné les techniques de fabrication et notre vie quotidienne. Leur utilisation est devenue incontournable dans de nombreux domaines tels que le transport, les communications, la microélectronique ou la santé.

Lors de cette présentation les mécanismes physiques responsables de l’absorption et de la diffusion de l’énergie laser dans un matériau seront décrits. Les principales applications de ces sources seront également présentées avant de se focaliser sur le formidable potentiel des lasers ultrabrefs, dont la durée des impulsions est de quelques dizaines de femtosecondes, dans le domaine de la micro/nanofabrication.

Début :
lundi 17 juin 2019 à 14:00:00 heure d’été d’Europe centrale
Fin :
lundi 17 juin 2019 à 16:00:00 heure d’été d’Europe centrale
Endroit :
24 juin 2019
Gigaton Volume Detector in Lake Baikal: status of phase-1
Olga Suvorova (INR)
Voir détails Cacher détails
Description :

In this talk I will present the status of construction and operation of neutrino telescope in Lake Baikal, the detector Baikal-GVD of gigaton volume. In particular, basic elements of the GVD, data processing and preliminary results, and as well,  main features of the Baikal-GVD site and optical properties of water will be shown. Off-line analysis of two famous cosmic events, GW170817 and IC170922A, and the beginning of multi messenger program are discussed.

 

Olga Suvorova, leader researcher of Laboratory of High Energy Neutrino Astrophysics, Institute for Nuclear Research of Russian Academy of Sciences, Moscow. Research interests: high energy neutrino, dark matter, astrophysics, cosmic rays. She has worked in Baksan Underground Scintillation Telescope (Russia, Northern Caucasus and Moscow, 1982-2009); ANTARES (France, Saclay and Strasbourg, 2000-2003); ULTIMA (France, Grenoble, 2007-2009); Baikal-GVD (Russia, Baikal and Moscow, 2009-since now).

Début :
lundi 24 juin 2019 à 14:00:00 heure d’été d’Europe centrale
Fin :
lundi 24 juin 2019 à 16:00:00 heure d’été d’Europe centrale
Endroit :
1 juil. 2019
Liquido
Anatael Cabrera (IN2P3/CNRS - Laboratoires APC(Paris) / LNCA (Chooz))
Voir détails Cacher détails
Description :
Début :
lundi 1 juillet 2019 à 14:00:00 heure d’été d’Europe centrale
Fin :
lundi 1 juillet 2019 à 16:00:00 heure d’été d’Europe centrale
Endroit :

5 derniers séminaires


27 mai 2019
Lisa
Hubert Halloin (APC / University Paris Diderot)
Voir détails Cacher détails
Description :

Début 2017, la mission spatiale LISA, constituée de 3 satellites formant un interféromètre de 2,5 millions de km de côté, a été sélectionnée par l’agence spatiale européenne, pour un lancement à l’horizon 2034. Après un an de consolidation du concept technique (Phase 0), LISA est actuellement en phase A (définition préliminaire) jusque mi-2020.
LISA observera des sources d’ondes gravitationnelles de fréquences comprises entre 0,1 mHz et 1 Hz. Les principaux objets astrophysiques attendus incluent les systèmes binaires de trous noirs supermassifs (jusqu’à z=13),  des milliers de binaires compactes galactiques, des binaires extrêmes, peut-être des fonds stochastiques primordiaux et l’ensemble des sources inattendues…
Dans cet exposé, nous présenterons les principales sources astrophysiques et leur interêt scientifique. Nous détaillerons ensuite la mission LISA (et son précurseur LISA Pathfinder), ses caractéristiques techniques, les principaux défis technologiques et performances espérées (et mesurées dans le cas de LISA Pathfinder). Nous conclurons en présentant l’organisation de la contribution française et sa place dans le Consortium LISA.

Short CV:

- Maitre de conférences à l’Université Paris Diderot, membre du laboratoire APC, depuis 2005
- A l’APC : instrumentation pour LISA :
—> caractérisation des modulateurs acoustiques-optiques pour LISA Pathfinder
—> stabilisation de fréquence laser sur raie moléculaire
—> génération de signaux interférométriques réalistes, optiques et électriques, pour LISA (expérience banc LISA On Table)
- Responsabilités LISA 
—> Correspondant IN2P3 pour le projet LISA
—> Membre du SEO LISA et de la Core Team Instrument

Début :
lundi 27 mai 2019 à 14:00:00 heure d’été d’Europe centrale
Fin :
lundi 27 mai 2019 à 16:00:00 heure d’été d’Europe centrale
Endroit :
29 avr. 2019
Des capteurs visuels bio-inspirés aux robots bio-inspirés
Franck Ruffier (Institut des Sciences du Mouvement )
Voir détails Cacher détails
Description :

  I will present robotics application of insect-inspired autoadaptive sensors (Time-of-travel local motion sensor, CurvACE, M2APix) where motion detection is at a premium, such as collision-free navigation of aerial robots (Octave, Lora, Beerotor robots) and odometry of terrestrial robots (BioCarBot robot).

In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package.

Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface.

In this talk, I will detail:
(i) a unique design method for biomimetic compound eyes called CurvACE (1) featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species.

(ii) a novel analog silicon retina featuring auto-adaptive pixels that obey the Michaelis-Menten law The novel pixel, called M2APix (2), which stands for Michaelis-Menten Auto-Adaptive Pixel, can auto-adapt in a 7-decade range and responds appropriately to step changes up to +/-3 decades in size without causing any saturation of the Very Large Scale Integration (VLSI) transistors. Thanks to the intrinsic properties of the Michaelis-Menten equation, the pixel output always remains within a constant limited voltage range. The results presented here show that the M2APix produced a quasi-linear contrast response once it had adapted to the average luminosity.

(iii) application of these bio-inspired sensors where motion detection is at a premium, such as collision-free navigation of aerial robots (3) (i.e. Beerotor) and odometry of terrestrial robots (4) (i.e. BioCarBot).


(1) D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner, R. Leitel, W. Buss, M. Menouni, F. Expert, R. Juston, M. K. Dobrzynski, G. L’Eplattenier, F. Recktenwald, H. A. Mallot, N. Franceschini (2013)
« Miniature curved artificial compound eyes »
Proceedings of National Academy of Sciences of USA, PNAS, 2013 Jun 4, 110(23):9267-72

(2) S. Mafrica, S. Godiot, M. Menouni, M. Boyron, F. Expert, R. Juston, N. Marchand, F. Ruffier, S. Viollet (2015)
« A bio-inspired analog silicon retina with Michaelis-Menten auto-adaptive pixels sensitive to small and large changes in light »
Optics Express (OSA), Vol. 23, Issue 5, pp. 5614-5635

(3) F. Expert and F. Ruffier (2015)
« Flying over uneven moving terrain based on optic-flow cues without any need for reference frames or accelerometers »
Bioinspiration & Biomimetics, 10, 026003 (IOP)

(4) S. Mafrica, A. Servel, F. Ruffier (2016)
« Optic-Flow Based Car-Like Robot Operating in a 5-Decade Light Level Range »
2016 IEEE Int. Conf. Robot. Autom. (ICRA 2016), Stockholm, Sweden, May 16-21, 2016



Mini-Bio

Franck Ruffier received an engineering degree in 2000 and a Ph.D. degree from INP-Grenoble in 2004, as well as a habilitation to supervise research (HDR in French) from Aix-Marseille University in 2013. He was visiting scientist invited by Prof. Michael Dickinson, Univ. of Washington, Seattle, USA during 2 months in 2012 as well as in 2008 by Dr. T. Mukai at RIKEN, Nagoya, Japan. Franck Ruffier published more than 80 articles in international Journals, referred Proceedings and  12 book chapters  as well as he filed 9 patents. His present position is CNRS research scientist at the Institute of Movement Science (ISM). His main areas of interest are bio-inspired vision and robotic.

Début :
lundi 29 avril 2019 à 14:00:00 heure d’été d’Europe centrale
Fin :
lundi 29 avril 2019 à 16:00:00 heure d’été d’Europe centrale
Endroit :
8 avr. 2019
50 ans de physique et 4 Nobel et demi
Francois Vannucci (LPNHE/APC)
Voir détails Cacher détails
Description :

Dans le cadre des 80 ans du CNRS, anecdotes vécues en compagnie de personnalités de la physique des particules.

Début :
lundi 8 avril 2019 à 14:00:00 heure d’été d’Europe centrale
Fin :
lundi 8 avril 2019 à 16:00:00 heure d’été d’Europe centrale
Endroit :
1 avr. 2019
Probing the early Universe through the shroud of foregrounds and systematics, using future CMB space satellites.
Ranajoy Banerji (APC-IN2P3)
Voir détails Cacher détails
Description :

Future proposed CMB missions target a sensitivity of 10e-3 on the tensor to scalar ratio (r) of the perturbations from Inflation, among a host of other cosmological and astrophysical observables. The weak CMB polarisation signal is dominated at all frequencies by galactic foregrounds, and at the required sensitivities, systematic effects due to small uncertainties in instrumental parameters can become science limiting. We look at, from a data analyst's perspective, why it's important to have a CMB space mission, and means and methods by which we can minimise the contamination from foregrounds and systematics, and disentangle the cosmological signal to achieve optimal science goals.

Début :
lundi 1 avril 2019 à 14:00:00 heure d’été d’Europe centrale
Fin :
lundi 1 avril 2019 à 16:00:00 heure d’été d’Europe centrale
Endroit :
25 mars 2019
TIME and SPace real-time Operating Tracker
Adriano Lai (INFN Cagliari)
Voir détails Cacher détails
Description :

High Luminosities planned at colliders of the next decades pose very severe requirements on vertex detector systems in terms of space resolution (tens of µm), radiation hardness (5 to 10 x 10^16 1 MeV neq cm^-2 and some Grad) and data throughput (a few Tbit/s). Expected event pile-up (>100) introduces the need to add high resolution time measurements (better than 100 ps) already at the single pixel level, for both real-time and off-line track reconstruction. This demand pushes towards a new concept of vertex detector system, where all these features must operate at the same time.

The TIMESPOT project (TIME and SPace real-time Operating Tracker) is a R&D project, financed by INFN, whose strategy consists in facing this experimental challenge at system level. It consists of a research team gathering together state-of-the-art knowledges from different expertises and disciplines, in such a way to finalize existing technologies in the direction of an innovative tracking apparatus.

Many intersting results are already available as an outcome of the TIMESPOT activity. In sensor development, a 3D trench-based geometry has been chosen to be the best one concerning high time resolution applications, and has been already submitted for fabrication. Activity on the design of dedicated front-end in 28-nm CMOS has led to the submission of a complete pixel read-out circuit, also integrating a TDC with 15 ps r.m.s. resolution. A special care is being dedicated to the development of real-time reconstruction algorithms for tracking. Pre-processing is based on the concept of so-called stubs or tracklets, which can be pre-constructed and combined already at the front-end level.

In this talk, after a short overview of the project, some of TIMESPOT results obtained so far will be illustrated, with special emphasis on 3D trench sensors and front-end pixel electronics for high resolution timing.

 

 

micro CV of Adriano Lai

A. Lai is an experimental physicist, presentlyDirector of Technology at INFN – Italy.

Since the end of his PhD, he has worked on the conception and construction of detectors, with special emphasis on the design of complex electronics systems. He mainly worked within international collaborations in experiments realized at CERN: PS201 (1992), physics of the nucleus; NA48, direct CP violation (1993-98); LHCb, matter-antimatter asymmetry and rare decays (1999 to present). Since the 90s, he has also covered various roles of responsibilitiy in several national and international research and developement projects, aimed at the conception of innovative experimental techniques and/or at applying new experimental solutions to bio-medical applications. Such projects are: MARE (1997-99), digital radiology system development; microDiagene EU grant initiative (2000-01), miniaturized DNA sequencer (EU FP6); ToASIC (2008-2010), deep-submicron integrated circuit development; Polaris (2010-2013), development of polarized active targets at cryogenic temperatures; AllDigital (2012), development of a fully digital PLL circuit; DORELAS (2014), characterization of solid state devices at liquid helium temperatures for a double resonance detector; AXIOMA (2015-17), development of a laser-operated coherent scintillator. During the years 2012-15 he was INFN scientific responsible and electronics designer of the SENSIPLUS project, aimed at realizing a System-On-a-Chip device for homeland security.

Since 2018, he leads a group of 60 physicists and engineers from 10 Universities in the TIMESPOT project (R&D on fast timing 3D sensors and related electronics).

He is also member of the INFN National Scientific Committee for Physics at accelerators (CSN1) since 2015.

Début :
lundi 25 mars 2019 à 14:00:00 heure normale d’Europe centrale
Fin :
lundi 25 mars 2019 à 16:00:00 heure normale d’Europe centrale
Endroit :