Prochains séminaires


28 sept. 2020
Anti-date: amphi réservé par MadMax (28-30/09)
Voir détails Cacher détails
Début :
lundi 28 septembre 2020 à 14:00:00 heure d’été d’Europe centrale
Fin :
lundi 28 septembre 2020 à 16:00:00 heure d’été d’Europe centrale

5 derniers séminaires


25 mai 2020
Probing extended Higgs and Dark Sectors with b-jets at the LHC
Matthias Saimpert (CERN)
Voir détails Cacher détails
Description :

In the Standard Model, Yukawa-like interactions are short-range interactions between the fermions and the Higgs boson. Even though these interactions have important macroscopic consequences, only a subset of them could be observed directly and their origin remains unclear. At the LHC, the top and the b-quark are very sensitive probes for particles with Yukawa-like interactions, due to their large mass. This includes Higgs bosons, but also new scalar particles predicted by theories beyond the standard model and connected to the dark sector. By virtue of the tbW branching ratio being close to 100%, both b- and top quarks are inferred by the presence of hadronic jets initiated by b-quarks, called b-jets, in the final state. I will introduce b-jet identification at the LHC and demonstrate its crucial role to study the coupling of the Higgs boson to third-generation fermions and probe the dark sector. I will highlight the importance of b-jet identification for the future steps of the LHC physics program and discuss the main experimental challenges.

 

Plan A: Vidyo

Please join the meeting by clicking this link:
https://vidyoportal.cern.ch/join/93ZUvoioxz
 
If you want to join by phone, please use one of the phone numbers listed in the link below:
http://information-technology.web.cern.ch/services/fe/howto/users-join-vidyo-meeting-phone
and enter the meeting extension 1010416927*13288 in order to join.
 
Plan B: Zoom
Début :
lundi 25 mai 2020 à 14:00:00 heure d’été d’Europe centrale
Fin :
lundi 25 mai 2020 à 16:00:00 heure d’été d’Europe centrale
4 mai 2020
New lattice QCD calculation of the hadronic vacuum polarization contribution to the muon magnetic moment
Laurent Lellouch (CPT Marseille)
Voir détails Cacher détails
Description :

Charged-lepton magnetic moments play a special role in probing the standard model (SM) of particle physics, which is complementary to direct searches for new physics at the energy frontier. In particular, the experimental value of the anomalous contribution to the muon magnetic moment, $a_\mu=(g_\mu-2)/2$, has exhibited a persistent discrepancy of over 3 standard deviations with the SM prediction, ever since the very precise measurement made at Brookhaven National Lab in the early 2000s. This is particularly enticing, because it could indicate the presence new, fundamental physics.  At present, theoretical and experimental uncertainties are comparable in size. However, a new experiment underway at Fermilab, and another one planned at J-PARC, are aiming to reduce the error on the measurement of $a_\mu$ by a factor of 4. To fully leverage these future measurements, and possibly claim the presence of new fundamental physics, it is imperative to check the SM prediction with independent methods and to reduce its uncertainties. After an introduction and a discussion of the current experimental and theoretical status of $a_\mu$, I will present a new lattice QCD calculation of the contribution to this quantity that most limits the precision of its SM prediction.  Surprisingly, our result eliminates the need to invoke new physics to explain the current measurement of $a_\mu$.

 

 

 

 

 

Plan A: Zoom

Phone connection:

France +33 1 7037 2246

France +33 1 7037 9729

France +33 7 5678 4048

---------------------------------------------------------------------

Plan B: Vidyo

Please join the meeting by clicking this link:
https://vidyoportal.cern.ch/join/93ZUvoioxz
 
If you want to join by phone, please use one of the phone numbers listed in the link below:
http://information-technology.web.cern.ch/services/fe/howto/users-join-vidyo-meeting-phone
and enter the meeting extension 1010416927*13288 in order to join.
Début :
lundi 4 mai 2020 à 14:00:00 heure d’été d’Europe centrale
Fin :
lundi 4 mai 2020 à 16:00:00 heure d’été d’Europe centrale
27 avr. 2020
Turning seafloor fiber optic cables into dense seismo-acoustic arrays
Anthony Sladen (Geoazur, Nice)
Voir détails Cacher détails
Description :

Two thirds of the surface of our planet are covered by water and are still poorly instrumented, which has prevented the earth science community from addressing numerous key scientific questions. The strategy explored here is to leverage the network of fiber optic seafloor telecom cables already in place and that criss-cross the oceans. This is made possible by the metrological approach called Distributed Acoustic Sensing (DAS) which analyze the properties of the light back-propagated to infer strain variations of the fiber. I will present results of measurements performed on the 41.5 km-long MEUST-NUMerEnv telecom cable deployed offshore Toulon, France. Our observations demonstrate the capability of the approach to turn the cable into a dense network of seismo-acoustic sensors; here we recorded at 2kHz over more than 6500 sensors. With these sensors we can monitor with unprecedented details the ocean-solid earth interactions from the coast to the abyssal plain, the propagation of waves generated by regional micro-earthquakes or simply track passing boats. The ability of DAS to provide a dense sampling of the seismo-acoustic wavefield over large distances is unique and paves the way to many more applications and new discoveries.

Anthony Sladen: https://asladen.github.io

Reference: https://asladen.github.io/publication/content/preprint/sladen-2019-distributed/

 

Videoconference infos:

Meeting ID: 915 8206 9539
 
Phone:
+33 1 7037 2246,,91582069539# France
+33 1 7037 9729,,91582069539# France
 
Début :
lundi 27 avril 2020 à 14:00:00 heure d’été d’Europe centrale
Fin :
lundi 27 avril 2020 à 16:00:00 heure d’été d’Europe centrale
20 avr. 2020
Belle II explores new "portal" into dark matter - First results from the Belle II Experiment
Laura Zani (INFN of Pisa)
Voir détails Cacher détails
Description :

The Belle II international collaboration has published its first results in a paper selected as an Editors’ Suggestion in Physical Review Letters. The paper reports the first search for a new type of elementary particle that may act as a “portal” between ordinary matter and dark matter, which is understood to make up some 85% of the matter in the universe. Cosmological observations in recent years provide strong evidence that only 15% of the mass of the matter of the universe is known to us, while the remaining 85% is composed of some still undetected and mysterious particles known as dark matter. A great deal of effort in the international particle physics community, including the Belle II experiment, is now focused on finding evidence of dark matter particles.

The Belle II experiment, which operates at the SuperKEKB electron-positron collider in Tsukuba, Japan, searched for a hypothetical new particle called the Z’ that may act as a “portal” between ordinary matter and dark matter. Belle II data collected in 2018 shows no evidence of the Z’, setting new limits on the properties of such a particle.


 

Plan A: Vidyo

Please join the meeting by clicking this link:
https://vidyoportal.cern.ch/join/93ZUvoioxz
 
If you want to join by phone, please use one of the phone numbers listed in the link below:
http://information-technology.web.cern.ch/services/fe/howto/users-join-vidyo-meeting-phone
and enter the meeting extension 1010416927*13288 in order to join.
 
Plan B: Zoom
 
Début :
lundi 20 avril 2020 à 14:00:00 heure d’été d’Europe centrale
Fin :
lundi 20 avril 2020 à 16:00:00 heure d’été d’Europe centrale
Endroit :
Vidyo / Zoom
30 mars 2020
10 ans du LHC [annulation]
Voir détails Cacher détails
Début :
lundi 30 mars 2020 à 14:00:00 heure d’été d’Europe centrale
Fin :
lundi 30 mars 2020 à 16:00:00 heure d’été d’Europe centrale