Prochains séminaires


19 avr. 2021
Reproductibilité dans le domaine du calcul (Title to be updated)
Konrad Hinsen (Centre de Biophysique Moléculaire, CNRS Orléans)
Voir détails Cacher détails
Début :
lundi 19 avril 2021 à 14:00:00 heure d’été d’Europe centrale
Fin :
lundi 19 avril 2021 à 16:00:00 heure d’été d’Europe centrale
26 avr. 2021
A search for low-energy cosmic antiparticles as a signature of dark matter – the GAPS experiment
Chuck Hailey (Columbia University)
Voir détails Cacher détails
Description :

What the universe is made of is a fundamental question. And yet dark matter, which makes up >80% of the matter in the universe, is of unknown nature. One approach to identifying dark matter is to search for cosmic antiparticles produced when dark matter annihilates or decays. But a “smoking gun” signature is desirable, so that the dark matter generated cosmic particles are not confused with conventional cosmic rays. Low-energy antideuterons have long been known to represent such a “smoking gun”. The General Antiparticle Spectrometer (GAPS) is the only experiment optimized specifically to search for low-energy (< 0.25 GeV/n) cosmic antiprotons, antideuterons, and antihelium. Its goals are (i) to deliver a first-time detection of cosmic antideuterons, an unambiguous signal of new physics that probes a wide array of dark matter models, or to improve upon previous antideuteron limits by two orders of magnitude, (ii.) to provide a precision antiproton spectrum in a previously unexplored energy region, permitting leading constraints on light dark matter, the best limits on primordial black hole evaporation on Galactic length scales and novel constraints on cosmic-ray propagation models, and (iii.) to investigate recent AMS claims of evidence for cosmic antihelium. GAPS will execute three ultra-long duration balloon flights from Antarctica. I will review the current status of antimatter searches for dark matter, and discuss progress on building the GAPS experiment.

Début :
lundi 26 avril 2021 à 14:00:00 heure d’été d’Europe centrale
Fin :
lundi 26 avril 2021 à 16:00:00 heure d’été d’Europe centrale
31 mai 2021
AGLAE: accélérateur Grand Louvre d'analyse élémentaire
Claire Pacheco
Voir détails Cacher détails
Début :
lundi 31 mai 2021 à 14:00:00 heure d’été d’Europe centrale
Fin :
lundi 31 mai 2021 à 16:00:00 heure d’été d’Europe centrale
7 juin 2021
IceCube and the emergence of high-energy neutrino astronomy
Christian Spiering (DESY, Zeuthen)
Voir détails Cacher détails
Description :

The idea to use neutrinos as cosmic messengers dates back to the 1950s,
and the concept of Cherenkov Neutrino Telescopes deep underwater to the
year 1960. It took more than half a century before a detector large
enough to detect cosmic high-energy neutrinos was built: The IceCube
Neutrino Telescope at the South Pole. I will decribe the way towards
IceCube construction and sketch IceCube's main results, starting with
the discovery of a diffuse flux of cosmic neutrinos in 2013. I will also
try a look into the near future, where IceCube will be flanked by
telescopes of similar size in the Mediterranean Sea (KM3NeT) and in Lake
Baikal.

Début :
lundi 7 juin 2021 à 14:00:00 heure d’été d’Europe centrale
Fin :
lundi 7 juin 2021 à 16:00:00 heure d’été d’Europe centrale
14 juin 2021
Seminar on PeVatrons (title to be updated)
pierre cristofari (APC CNRS)
Voir détails Cacher détails
Début :
lundi 14 juin 2021 à 14:00:00 heure d’été d’Europe centrale
Fin :
lundi 14 juin 2021 à 16:00:00 heure d’été d’Europe centrale
Endroit :
Zoom

5 derniers séminaires


12 avr. 2021
The DUNE experiment and its Far Detectors
Jaime Dawson (AstroParticule et Cosmologie, Paris 7)
Voir détails Cacher détails
Description :

The Deep Underground Neutrino Experiment (DUNE) aims to make precise measurements of long-baseline neutrino oscillations over a 1300 km baseline. A high power wide-band beam operating in neutrino (anti-neutrino) mode will be produced at Fermilab, with its flux and flavour composition characterised with the Near Detector system. At the Sandford Underground Research Facility (SURF), 1300 km away, deep underground, four gigantic Far Detector modules (with 70 kton total mass) will observe  νμ (ν̄μ ) disappearance, νe (ν̄e ) and ντ (ν̄τ ) appearance. In doing so DUNE will be able to determine the Neutrino Mass Ordering (at more than 5 sigmas), measure the CP Violating phase over a wide range of values, measure precisely the oscillation parameters and test the 3-flavour paradigm.   With gigantic Far Detectors, deep underground, DUNE will be able to detect neutrinos from a Galactic core-collapse supernova, should one occur, and search for nucleon decay and other physics beyond the Standard Model.

The DUNE Far Detectors will be Liquid Argon Time Projection Chambers (TPC). Such gigantic detectors need large scale prototyping not only to determine the performance but also to validate the technology, engineering solutions, and installation procedures at large-scale. A significant prototyping effort is ongoing at the CERN neutrino platform. Two TPC technologies have been explored at the kton-scale, with the Single Phase and Dual Phase ProtoDUNEs. A hybrid solution, building on the strengths of both, is also being explored.

In this talk I will discuss the physics objectives of DUNE and the far detectors necessary to achieve them.

Début :
lundi 12 avril 2021 à 14:00:00 heure d’été d’Europe centrale
Fin :
lundi 12 avril 2021 à 16:00:00 heure d’été d’Europe centrale
Endroit :
Zoom
29 mars 2021
Probing the neutrino mass with tritium beta decay
Kathrin Valerius (KIT Karlsruhe)
Voir détails Cacher détails
Description :

Precision measurements of the kinematics of weak decays offer a direct and nearly model-independent approach to probe the absolute neutrino mass scale. The KArlsruhe TRItium Neutrino experiment (KATRIN) is searching for the minute imprint of the neutrino mass in the endpoint region of the tritium beta-decay spectrum. KATRIN employs a high-intensity gaseous molecular tritium source and a high-resolution electrostatic filter with magnetic adiabatic collimation to target a neutrino-mass sensitivity of 0.2eV/c^2, thus improving on previous experiments by an order of magnitude, after five years of data-taking.

With just its first science run, KATRIN has improved previous direct neutrino mass bounds by about a factor of two, yielding a new upper limit of 1.1 eV/c^(90% CL), and has begun to address further science channels such as the direct search for light sterile neutrinos. As larger data sets are collected and further improvements in terms of signal-to-background ratio and systematics are being achieved, KATRIN is continuing along its path towards sub-eV neutrino mass sensitivity and the exploration of interesting BSM physics cases. 

References:
[1]  KATRIN Collaboration, “Improved upper limit on the neutrino mass from a direct kinematic method by KATRIN”PRL 123 (2019) 221802
[2] KATRIN Collaboration, Bound on 3+1 Active-Sterile Neutrino Mixing from the First Four-Week Science Run of KATRINPRL 126 (2021) 091803
[3] KATRIN Collaboration, Analysis methods for the first KATRIN neutrino-mass measurement“arXiv:2101.05253
Début :
lundi 29 mars 2021 à 14:00:00 heure d’été d’Europe centrale
Fin :
lundi 29 mars 2021 à 16:00:00 heure d’été d’Europe centrale
15 mars 2021
BeyondPlanck: Optimal end-to-end Bayesian analysis of Planck LFI
Hans Kristian Eriksen (University of Oslo)
Voir détails Cacher détails
Description :

Observations of the cosmic microwave background (CMB) have played a critical role in establishing the current cosmological concordance model. Next generation CMB experiments promise to go even further, and image the very birth of the universe by observing primordial gravitational waves created during the Big Bang. However, observing this signal will be a tremendous challenge, as the expected signal can easy be contaminated by systematic uncertainties both from confusing radiation from the Milky Way and from instrumental imperfections. In this talk, I will describe the BeyondPlanck project, which developed the world's first end-to-end Bayesian CMB analysis code, accounting for both instrumental and astrophysical uncertainties, and applied this to the Planck LFI data set. I will argue that this approach not only sets a new standard for CMB analysis, but also that the main ideas are applicable to any experiment for which systematic error propagation is the main limiting factor.

Début :
lundi 15 mars 2021 à 14:00:00 heure normale d’Europe centrale
Fin :
lundi 15 mars 2021 à 16:00:00 heure normale d’Europe centrale
8 mars 2021
The Mu3e Experiment: A new search for muon -> eee
Andre Schoening (Heidelberg University)
Voir détails Cacher détails
Description :

The lepton flavor violating (LFV) decay muon -> eee is highly suppressed in the Standard Model (SM) to an unobservable level. The observation of this LFV decay would be a clear signal of physics beyond the SM. The Mu3e collaboration aims to improve the experimental sensitivity by
several orders of magnitudes with respect to the existing bound B(muon -> eee)<1E-12 (90% CL) obtained by the SINDRUM experiment in the year 1988.

After motivating the searches for lepton flavor violation, I will introduce the novel detector concept and discuss the  technologies chosen for instrumentation. Emphasis will be given to the main tracking device, an all-pixel tracking detector which is based on High Voltage Monolithic Active Pixel Sensors (HV-MAPS) and exploits an ultra-light design with a radiation length of only 1 per mill per tracking layer.

Finally, the status of the experiment and the planned 2021 integration run will be presented.

 

Andre's CV: https://www.physi.uni-heidelberg.de/~schoning/CV.php

Zoom link: https://cern.zoom.us/j/91966246292?pwd=UHRZVmN0UmNJbzNqVmhpcUhYY1VXUT09

Début :
lundi 8 mars 2021 à 14:00:00 heure normale d’Europe centrale
Fin :
lundi 8 mars 2021 à 16:00:00 heure normale d’Europe centrale
22 févr. 2021
Looking at the cosmic voids, a promising cosmological probe
Pauline Vielzeuf (Sissa, Trieste)
Voir détails Cacher détails
Description :

I will start with an introduction on the status of cosmology today and more specifically how the observations of the late universe and 3 dimensional maps built by galaxy surveys can help us to characterise the mysterious Dark Energy. I will follow by presenting how cosmic voids, these extra large underdensed regions of the cosmic web, are becoming promising probe of the underlying matter field and will expose more in details the methodology and results on the gravitational lensing signal of cosmic voids (from both background galaxy and Cosmic microwave background) obtained with the Dark Energy Survey galaxy catalogues.

Début :
lundi 22 février 2021 à 14:00:00 heure normale d’Europe centrale
Fin :
lundi 22 février 2021 à 16:00:00 heure normale d’Europe centrale