Internships


Each year, CPPM welcomes more than a dozen trainees in the various research teams of the laboratory. The internships offered by the laboratory can be of several kinds:

  • Bachelor's/Master's level physics internships: they are spontaneous or compulsory and are intended for Bachelor's and Master's level students who have completed a physics course. Specific offers are submitted by the various research teams during the year.

  • Technical internships (BTS, IUT, Engineer): they are generally part of your school curriculum. Precise offers are submitted by the various teams and departments during the year.

  • High school internships: during one week, we welcome high school students for observation internships, for specific periods of time.

To apply for physics or technical internships, you must attach to your application a CV, a cover letter as well as your last transcript (transcript of the previous year or the last semester of the year current year if available ). For Master internships, recommendation letters from your professors or former internship supervisors may be requested.

Whatever the nature of your internship, a favourable response from one of our laboratory staff is not sufficient to hire you as an internship student. Indeed, only the agreement of the CPPM dirctor and the establishment of a legal agreement between the CPPM and your school/University are the two conditions to formaly welcome you as trainee student at CPPM.

Contacts: Timothée Theveneaux-Pelzer (Physics Internships), Frédéric Hachon (Technical Internships), Fabrice Feinstein et Julien Zoubian (College Internships), Marlon Barbero and Julien Cogan (High School Internships), and Bérénice Fatela (Administrative Internships)

Internship M2


Atlas
Optimisation of the Electromagnetic Calorimeter of the ALLEGRO Detector at the Future Circular Collider
See more Hide
Internship supervisor:
Farès Djama - djama@cppm.in2p3.fr
Description:

The top priority of particle physics community for the future is the construction of a Higgs factory: An electron-positron collider, to study the Higgs boson, discovered at CERN in 2012.

The clean collision environnement provided by such colliders enables easier and more precise analysis and measurements. One of the popular options for such a factory is the Future Circular Collider (FCC), which is being evaluated by Monte Carlo methods, including detailled simulation of detectors which would be built at FCC collision points, if this project is chosen. The FCC will have a circumference of 91 km, be located 200 m under the french-swiss boarder near Geneva and hoped to start on 2045.


One of the concept-detector being evaluated is ALLEGRO. It will be equipped by a highly granular lead/nobel liquid sampling electromagnetic calorimeter. The intership is about optimising this calorimeter by looking at the performance of different options. The options are about absorber material (lead or tungestene), noble liquid (argon or krypton), front-end electronics location (inside or outise the cryostat) and cryostat material (aluminium or carbon fibers). The performace includes naturally energy resolution, but also particle flow capability, MIP tagging and detection of photons down to 200 MeV.


The trainee will determine performance of different calorimeter options by analysing simulated calorimeter response to generated particles at different energies and locations.


Keywords:
Physique des particules
Code:
M2-2526-AT-04
Identification of photons in the ATLAS calorimeter using advanced machine learning techniques
See more Hide
Internship supervisor:
Georges Aad - aad@cern.ch
Description:

The last piece of the Standard Model of particle physics, the Higgs boson, was discovered by the ATLAS and CMS collaborations in 2012. The newly discovered boson provides a unique opportunity to search for unknown physics beyond the Standard Model. The ATLAS group at CPPM had a leading role in detecting and studying the Higgs boson's properties in several of its production and decay modes. The group is currently concentrating on detecting the production of two Higgs bosons or two scalar bosons decaying into a pair of photons and b-quarks (HH/SH->bbyy), a process that has never been observed before. The CPPM group also has a strong contribution to the design, production, and installation of the ATLAS liquid argon calorimeter and its electronics.


Efficient identification of photons in the ATLAS liquid argon calorimeter is essential for detecting the HH/SH->bbyy processes. The internship will focus on developing neural networks capable of identifying photons and separating them from the background, mainly consisting of hadronic jets. The candidate will build various variables describing the electromagnetic shower shape of the photon in the calorimeter and design and train a neural network to identify photons using these shower shapes. Prior knowledge of programming languages, especially C++/ROOT or Python, and machine learning tools such as Keras, is an advantage but not mandatory.


Keywords:
Physique des particules
Code:
M2-2526-AT-01
Model-independent search for new physics at the HL-LHC using unsupervised machine learning
See more Hide
Internship supervisor:
Georges Aad - aad@cern.ch
Description:

The last piece of the standard model of particle physics, the Higgs boson, was discovered by the ATLAS and CMS collaborations in 2012. Following the Higgs boson discovery, the LHC focus has shifted to identifying new physics beyond the Standard Model. The ATLAS group at CPPM have a leading role in detecting and studying the Higgs boson properties in several of its production and decay modes. The group is currently concentrating on the detection of the production of two Higgs bosons or two scalar bosons and the search for new physics with LHC data.


The internship will concentrate on developing and optimizing a neural network capable of detecting anomalies in LHC data that correspond to new physics signatures. The neural network will be trained in a unsupervised (or weekly supervised) manner so that it is sensitive to any deviation from the Standard Model regardless of the theoretical model describing the new physics. This provides a general algorithm capable of detecting unknown new physics that might exist in nature. The successful candidate will develop a neural network with an auto-encoder architecture, train it on simulated Standard Model data, and check its performance on a wide variety of simulated signal models.


Prior knowledge of programming languages (especially python) and of Neural network tools (especially Keras) is an advantage but is not mandatory.


Keywords:
----
Code:
M2-2526-AT-02
Search for HH or SH processes in the bbγγ b b \gamma \gamma final state with the ATLAS experiment at the LHC
See more Hide
Internship supervisor:
Timothée Theveneaux-Pelzer - +33 4 91 82 7275 - theveneaux-pelzer@cppm.in2p3.fr
Description:

The last piece of the Standard Model of particle physics, the Higgs boson, was discovered by the ATLAS and CMS collaborations in 2012. This newly discovered boson provides a unique possibility to search for new unknown physics beyond the Standard Model. The ATLAS group at CPPM have a leading role in detecting and studying the Higgs boson properties in several of its production and decay modes.


The group is currently concentrating on the detection of the production of two Higgs bosons (HH) or a Higgs boson and a possible new scalar boson (SH), processes which have never been observed before. The detection of the former would be a strong proof of the Higgs self coupling and the electroweak symmetry breaking as described by the Standard Model, while the observation of the latter would be a direct sign of physics beyond the Standard Model as predicted by several models.


This internship will focus on the bbγγ b b \gamma \gamma final state, in which the bosons decay into a pair of photons and a pair or b-quarks (HHbbγγ H H \rightarrow b b \gamma \gamma or SHbbγγ S H \rightarrow b b \gamma \gamma ). The run 3 of the LHC, currently in operation, will provide enough data to improve the discovery potential of such processes. The analysis of the run 3 data for these searches has already started, and led to two publications prepared now by several institutes around the world that collaborate at CERN. Further publications are foreseen using the full run 3 dataset to be collected until the spring 2026.


The successful candidate will work within a team of four researchers and two PhD students at CPPM. He/She will analyze the kinematic and topological distributions of the signal in order to improve the selection of signal events and separate them from the background.


Prior knowledge of programming language, especially C++/root or python, is an advantage but is not mandatory.


Keywords:
Physique des particules
Code:
M2-2526-AT-03
Belle II
Charm-baryon physics at the Belle II experiment
See more Hide
Internship supervisor:
Vitalii Lisovskyi - lisovskyi@cppm.in2p3.fr
Description:

Decays of heavy-quark hadrons allow to perform indirect searches for effects beyond the Standard Model, by comparing the measured decay properties to their Standard Model predictions. Although our world is made of baryons, our knowledge of heavy-quark baryon properties remains very limited.


Although the baryons that contain a charm quark and at least one strange quark have been studied for more than 40 years, there are still significant gaps in our knowledge of their properties and decays. Notably, the absolute branching fractions of the Omega_c baryon decays are unknown, and only relative decay rates have been measured. This is a significant limitation for any searches for physics beyond the Standard Model involving charm-baryon decays, or beauty baryons decays into charm baryons.


The Belle II detector at KEK (Japan) is aimed at precision measurements of properties of beauty and charm hadrons, as well as tau leptons (https://inspirehep.net/literature/1692393). The Belle II collaboration consists of more than 1000 scientists and is taking data since 2019. The key feature of the Belle II detector is the nearly 4pi angular acceptance, which allows to perform the full reconstruction of the visible collision products and calculation of the missing energy. Combined with conservation laws in e+e-->ccbar process (baryon number, electric charge, quark flavours), this allows to fully reconstruct only one charm hadron and deduce the properties of the other one. This, together with the powerful algorithms for full event interpretation and tagging, opens several opportunities to improve our knowledge of the strange-charm-baryon decay rates. The techniques for inclusive reconstruction of charm baryons developed in https://inspirehep.net/literature/1275621 will be extended to heavier strange-charm baryons.


Activities:

Data analysis, using machine learning tools.


Work context:

The successful candidate will be based at CPPM, Marseille (https://www.cppm.in2p3.fr).


Additional information:

Interested students are invited to submit their application that includes: a motivation letter, curriculum vitae, and grade records. They should also arrange for one letter of recommendation.


Additional references:

https://arxiv.org/abs/1312.7826

https://arxiv.org/abs/1811.09738

https://arxiv.org/abs/1904.12093


Keywords:
Physique des particules
Code:
M2-2526-BE-02
Search for the Bττ B \rightarrow \tau \tau decay at Belle II
See more Hide
Internship supervisor:
Giampiero Mancinelli - 0491827675 - giampi@cppm.in2p3.fr
Description:

Processes involving Flavor Changing Neutral Currents (FCNC), where a B meson undergoes decay into a pair of oppositely charged leptons, serve as potent avenues in the exploration of physics beyond the Standard Model (SM). Notably, the decay Bs0μμ B^0_s \rightarrow \mu \mu has been observed by LHC experiments, and its measured branching fraction (BF) aligns with the SM prediction, thereby imposing rigorous constraints on theories extending beyond the SM. Investigations into the tauonic modes Bττ B \rightarrow \tau \tau , where B can be either a B0 or B0s meson, become particularly compelling due to indications of lepton flavor nonuniversality hinted from several experiments in Bsll B \rightarrow s l l and Bclν B \rightarrow c l \nu processes. Models elucidating these anomalies propose that the BF of Bττ B \rightarrow \tau \tau modes could exhibit significant enhancements compared to SM predictions, potentially by several orders of magnitude. Only few measurements have been performed on those modes so far, Belle II is expected to improve them significantly. The Belle II experiment, situated at KEK in Japan, initiated data collection in 2019 with the aim of accumulating much more data than its predecessor, Belle. The goal of the stage will be to explore new ways to reconstruct (more inclusively) the non-signal B in the events or to perform the analysis without reconstructing the non-signal B at all, using appropriate decays of the signal taus.


Activities:


Data analysis possibly using Machine Learning techniques.


Work context:


This internship will take place at CPPM, Marseille (https://www.cppm.in2p3.fr/web/en/index.html).


Additional information:


Application must include a CV, grade records and a motivation statement .

References:


https://arxiv.org/abs/1808.10567

https://arxiv.org/abs/1703.02508

https://arxiv.org/abs/hep-ex/0511015


Keywords:
Physique des particules
Code:
M2-2526-BE-01
DarkSide
Direct search for dark matter with the DarkSide-20k experiment
See more Hide
Internship supervisor:
Yann Coadou - 04.91.82.72.72 - coadou@cppm.in2p3.fr
Description:

Dark matter is one of the main puzzles in fundamental physics today. Its contribution to the total mass of the Universe should be about 85%, but it cannot be explained in the framework of the Standard Model of particle physics (SM). Several candidates, however, exist in theories beyond the SM, and the WIMP (weakly interacting massive particle) is one of the best motivated, as it allows to also solve the SM hierarchy problem, directly linked to the stability of the Higgs boson mass.


The DarkSide-20k experiment, searching for dark matter in the halo of our galaxy, is currently being installed 1.4~km underground in the Gran Sasso laboratory in Italy. It will be the largest dark matter experiment ever built and will have the world leading discovery potential for WIMPs. Data taking should start in 2028. The increase of the liquid argon volume, compared with previous experiments, will allow DarkSide-20k to have the best sensitivity of all liquid argon detectors with only one month of data.


The goal of this internship is to prepare for data taking. Photons are produced in collisions between WIMPs and argon atoms. Once this light is collected in the detector by photomultiplicators, it must be treated, “reconstructed”, to extract for instance the location and energy of the collision within the argon volume. The student will participate in the simulation and improvement of data reconstruction algorithms, possibly with innovative machine leaning techniques (e.g., neural networks), to optimize the separation between signal and backgrounds. These activities will allow to become familiar with instrumental aspects, software and data analysis in an astroparticle physics experiment.


This project could be continued as part of a PhD thesis.


More details about the CPPM Dark Matter team:

https://www.cppm.in2p3.fr/web/en/research/astroparticles/index.html#Dark Matter>https://www.cppm.in2p3.fr/web/en/research/astroparticles/index.html#Dark Matter


Keywords:
Astroparticules
Code:
M2-2526-DS-01
HESS-CTA
Multi-Wavelength Modelling of SNR G106.3+2.7: Testing the Pulsar Hypothesis
See more Hide
Internship supervisor:
Franca Cassol - Pierrick Martin - cassol@cppm.in2p3.fr - pierrick.martin@irap.omp.eu
Description:

Context and Motivation


The Cherenkov Telescope Array Observatory (CTAO) is the next-generation, worldwide project for ground-based, very-high-energy (VHE) gamma-ray astronomy, i.e. the observation of photons with energies from 50 GeV to 50 TeV [1]. Its first Large-Sized Telescope, LST-1, is currently undergoing commissioning at the Observatorio del Roque de los Muchachos in La Palma, Canary Islands [2].


LST-1 is currently conducting a multi-year observation campaign targeting the Supernova Remnant (SNR) G106.3+2.7. This source is of particular interest because its ultra-high-energy (UHE) emission, extending up to hundreds of TeV, suggests it may be one of the yet-unrevealed acceleration sites for galactic cosmic rays with the most extreme energies, in the 1-10 PeV range [3]. As a consequence, SNR G106.3+2.7, along with its associated pulsar (PSR J2229+6114) and pulsar wind nebula (PWN), has been observed across radio, X-ray, and gamma-ray energies, which enables comprehensive multi-wavelength (MWL) modelling. This, and the new data at our disposal, should allow us to address very fundamental questions: What is the origin of the ultra-relativistic particles that we detect via gamma-rays? How are they transported across and out of the source until their release into the interstellar medium?


Project Goal and Methodology


Motivated by the non-trivial and puzzling emission layout revealed by our observations with LST-1, this project aims to reproduce the spectral and morphological properties of SNR G106.3+2.7 across the electromagnetic spectrum under the assumption that the observed emission is produced by ultra-relativistic electron-positron pairs accelerated by the pulsar. In particular, this will primarily consist in reproducing the X-ray and gamma-ray intensity and spectral index profiles along the source.


Inspired by previous literature on the subject, the student will implement a particle transport model based on simple yet physically-motivated assumptions utilizing Python libraries for radiation processes and equation solving. The goal is to go beyond the existing interpretations proposed so far and/or to explore specific aspects in relation to gamma-ray emission.


Impact and Student Benefits


The successful execution of this development will contribute to the physical interpretation of the present LST-1 observation campaign and will help validate or refute the PWN/pulsar emission hypothesis. Results will be presented within an international LST/CTAO working group.

The student will:

• Join a collaborative team of researchers from the LST/CTAO collaboration.

• Learn to model the transport of non-thermal particles in an astrophysical system.

• Develop advanced software development skills using Python.


Prerequisites: A medium-level proficiency in the Python programming language is required.


[1] CTA Observatory: https://www.cta-observatory.org/

[2] LST-1 : https://doi.org/10.1051/0004-6361/202450059

[3] https://arxiv.org/abs/2211.15321

[4] https://www.sciencedirect.com/science/article/pii/S2666675821000436


Keywords:
Astroparticules
Code:
M2-2526-CT-04
An Analysis of Observations of the Crab Nebula by the MAGIC Telescopes Using the New Magic-CTA-Pipe (MCP) Reconstruction Software
See more Hide
Internship supervisor:
Franca Cassol - cassol@cppm.in2p3.fr
Description:

Abstract:

This research project aims to validate a new software pipeline, magic-cta-pipe (MCP), for the reconstruction of very-high-energy (VHE) gamma-ray data from the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes. The performance of MCP will be evaluated using data from the Crab Nebula and compared with the established MAGIC analysis software, MARS. This comparison will focus on instrument response functions and derived source properties, such as significance and spectrum.


In-depth:

The Major Atmospheric Gamma Imaging Cherenkov (MAGIC) system consists of two 17-meter-diameter Imaging Atmospheric Cherenkov Telescopes (IACTs). It is dedicated to observing very high-energy (30 GeV to 100 TeV) gamma rays from galactic and extragalactic sources [1]. Close to MAGIC, the first Large-Sized Telescope (LST-1) of the Cherenkov Telescope Array Observatory (CTAO) is under commissioning. CTAO is a worldwide project to construct the next-generation, ground-based, VHE gamma-ray instrument [2].


A new reconstruction software, magic-cta-pipe (MCP), has been developed to stereo-reconstruct gamma-ray events using joint observations from MAGIC and LST-1 [3]. The goal of this internship is to verify the reconstruction quality of MCP using MAGIC-only data and to compare its performance with MARS [4], the standard MAGIC reconstruction software.


The project plan is as follows:

1. First, data from the Crab Nebula—the standard candle in gamma-ray astronomy—will be reconstructed using the new MCP reconstruction chain.

2. Then, the source will be analysed using gammapy [5], the CTAO science analysis tool, for both the MARS and the MCP reconstructed datasets.

3. Finally, a direct comparison of the quality of the two chains will be extracted by comparing their instrument response functions and the source's derived properties (significance and spectrum).


This achievement will validate the use of MCP for MAGIC-only data, which would be particularly useful in collaborative MAGIC and LST-1 projects. Results will be presented in the context of an international working group.


The student will join a team of experimental researchers from the LST/CTAO collaboration which are performing a joint project with the MAGIC collaboration.

S/He will learn and apply methods for IACT gamma-ray event reconstruction and the standard methods for spectral analysis of a very-high-energy (VHE) gamma-ray source.

S/He will use and potentially contribute to software packages based on Python, developing general software development and data analysis skills.


The candidate needs a medium knowledge of the Python programming language.


[1] MAGIC experiment: https://magic.mpp.mpg.de/

[2] CTA Observatory: https://www.cta-observatory.org/

[3] MCP package: https://github.com/cta-observatory/magic-cta-pipe

[4] MARS package: https://ui.adsabs.harvard.edu/abs/2013ICRC...33.2937Z

[5] gammapy package: https://gammapy.org/


Keywords:
Astroparticules
Code:
M2-2526-CT-01
Validation of the LST-1/CTAO Analysis Pipeline for Pulsar Science at Very Large Zenith Angles
See more Hide
Internship supervisor:
Franca Cassol - cassol@cppm.in2p3.fr
Description:

Context and Motivation:


The Cherenkov Telescope Array Observatory (CTAO) is the next-generation, worldwide project for ground-based, very-high-energy (VHE) gamma-ray astronomy [1]. Its first Large-Sized Telescope, LST-1, is currently undergoing commissioning at the Observatorio del Roque de los Muchachos in La Palma, Canary Islands [2].


LST-1 is currently conducting a multi-year observation campaign targeting the Super Nova Remnant (SNR) G106.3+2.7 and its associated powerful pulsar, PSR J2229+6114. While the pulsed emission of this pulsar has been measured up to a cut-off energy of about 3 GeV [3], there is a compelling hypothesis, motivated by the discovery of VHE emission from the Vela pulsar [4], that an emission component above 1 TeV is also present.


To maximize sensitivity at these high energies, these observations are performed at Large Zenith Angles (LZA), which significantly increases the telescope's effective area.


Project Goal and Methodology:


This project aims to validate and optimize the VHE analysis pipeline for the eventual study of PSR J2229+6114. Since the Crab Pulsar is a well-known VHE source with documented emission up to 1 TeV [5], it will serve as the crucial test bench.


The student will perform a pilot study using LST-1 observations of the Crab Pulsar taken at LZA (>50 degrees zenith angle).


The project plan is structured in three key stages:

• Data Selection: Select LST-1 data for the Crab Nebula specifically taken at zenith angles greater than 50 degrees.

• Pipeline Optimization: Apply and optimize quality cuts specific to LZA observations to select the best reconstructed events and phase-tag them to the pulsar.

• Scientific Analysis: Utilize Gammapy [6], the official CTAO science analysis tool, to establish the phaseogram (pulsed emission profile) and measure the VHE energy spectrum of the Crab Pulsar.


This original focus on LZA data analysis, particularly the optimization of LZA-specific quality cuts, distinguishes this work from previous studies [5].


Impact and Student Benefits:


The successful execution of this analysis on the Crab Pulsar will validate and prepare the entire LST-1 data analysis chain for the first-ever VHE search for pulsation from PSR J2229+6114. Results will be presented within an international LST/CTAO working group.


The Student Will:

• Join a collaborative team of experimental researchers from the LST/CTAO collaboration.

• Learn and apply state-of-the-art methods for Imaging Atmospheric Cherenkov Telescope (IACT) event reconstruction.

• Master standard techniques for spectral and temporal analysis of VHE gamma-ray sources.

• Develop advanced software development and data analysis skills using Python and potentially contributing to open-source analysis packages.


Prerequisites: A medium-level proficiency in the Python programming language is required.


[1] CTA Observatory: https://www.cta-observatory.org/

[2] LST-1 : https://doi.org/10.1051/0004-6361/202450059

[3] PSR J2229+6114 : https://iopscience.iop.org/article/10.1088/0004-637X/706/2/1331

[4] Vela Pulsar : https://arxiv.org/pdf/2310.06181

[5] Crab : https://doi.org/10.1051/0004-6361/202450059

[6] gammapy package: https://gammapy.org/


Keywords:
Physique des particules
Code:
M2-2526-CT-02
Analysis of LST-1 follow-up observations on KM3 230213A
See more Hide
Internship supervisor:
Lorenzo Feligioni - lorenzo@cppm.in2p3.fr
Description:

The Cherenkov Telescope Array Observatory (CTAO) is an international project aimed at building the next-generation ground-based instrument for very-high-energy gamma-ray astronomy [1, 2]. CTAO will include tens of Imaging Air Cherenkov Telescopes (IACTs) with different mirror diameter sizes of 4 m, 12 m, and 23 m, and it will be deployed at two sites, one in each hemisphere: La Palma in the Canary Islands and Paranal in Chile.

The observatory will be able to cover an unprecedented energy range, from 20 GeV to 300 TeV, by detecting the Cherenkov light emitted by charged particle showers produced when primary gamma rays interact in the upper atmosphere. With its outstanding capabilities, CTAO will tackle key open questions in astrophysics, such as the origin of high- and ultra-high-energy cosmic rays. Unraveling the sources of cosmic rays is a challenging endeavor, since charged particles are deflected by magnetic fields and thus do not point back to their origin. However, during their journey, cosmic rays produce photons and neutrinos through hadronic interactions with the interstellar medium. Unlike charged cosmic rays, these secondary messengers are not deflected and can directly trace the location of the cosmic-ray accelerators.

In 2023, the KM3NeT underwater neutrino detector recorded the most energetic neutrino ever observed (KM3 230213A) with an estimated energy of about 220 PeV [3]. Thanks to the initiative of the CPPM CTAO group, during the coming fall, the first CTAO operative telescope, Large-Sized Telescope (LST-1) will be used for an observation campaign scanning the portion of the sky pointing in the KM3 230213A measured direction.

During this internship, the candidate will participate to the analysis of the LST-1 follow-up observations of the KM3 230213A event. The work will involve applying standard data analysis techniques for IACTs observations aimed at searching for an electromagnetic counterpart to the neutrino event, and characterizing the source, in case of detection. If no detection is achieved, we will derive constraints on possible counterparts identified by other instruments.

The candidate will participate to the publication that will result from this work. Basic knowledge of Python programming, used for the analysis tools, is required. The internship could lead to a PhD grant.

References

[1] Science with the Cherenkov Telescope Array: https://arxiv.org/abs/1709.07997

[2] https://www.cta-observatory.org/

[3] Observation of an ultra-high-energy cosmic neutrino with KM3NeT (KM3NeT Collaboration et al., 2025): https://inspirehep.net/files/59b8d2e40c820202e8a7e4aac87eb9c4


Keywords:
----
Code:
M2-2526-CT-03
KM3NeT
Multi-messenger astronomy with the KM3NeT neutrino telescope
See more Hide
Internship supervisor:
Damien Dornic, Jean-Grégoire Ducoin - 0491827682 - dornic@cppm.in2p3.fr , ducoin@cppm.in2p3.fr
Description:

Context:

The KM3NeT experiment is a next-generation neutrino telescope currently under construction in the Mediterranean Sea. It aims to detect high-energy cosmic neutrinos to explore the most energetic phenomena in the Universe and to contribute to the emerging field of multi-messenger astronomy, in synergy with gravitational-wave, gamma-ray, and electromagnetic observatories.


The French multi-messenger network also includes the SVOM mission, a French–Chinese satellite dedicated to the study of transient astrophysical events, and the COLIBRI optical telescope, a robotic facility designed for rapid follow-up observations of SVOM alerts and other transient sources for which the CPPM is responsible of the official data analysis pipeline.


This internship will take place in the context of the KM3NeT and SVOM collaborations, focusing on the analysis of neutrino and optical data, alert systems, and real-time multi-messenger follow-up.


Objectives and Work Plan:

The student will participate to several complementary aspects of multi-messenger research in the KM3NeT context :

• Contribute to the analysis of KM3NeT neutrino data, with a focus on real-time alert generation and follow-up of astrophysical neutrino candidates. Participation on the operation and development of the KM3NeT alert system, and on the follow-up definition with other observatories (gamma-ray, optical, X-ray, radio).

• Participate in the SVOM and COLIBRI transient follow-up program, particularly through the analysis of ECLAIRs and COLIBRI data coincident with KM3NeT neutrinos or other messengers. Help coordinate and analyze joint datasets from SVOM and other observatories.


Expected Skills and Profile:

Background in astrophysics, particle physics, and/or data science

Experience with Python and related data analysis tools (NumPy, Astropy, Matplotlib, etc.). Experience in other coding languages is a plus.

Interest in multi-messenger astrophysics, neutrino astronomy, and transient phenomena.

Ability to work within large international collaborations.

Fluent in English.


Outcome:

The internship will provide hands-on experience in the analysis of real astrophysical data and the operation of cutting-edge instruments in multi-messenger astronomy. The student will gain valuable skills in data analysis, software development, and collaborative research across multiple observatories. This internship is intended to lead to a thesis.


Keywords:
Astroparticules
Code:
M2-2526-KM-01
Renoir
Study of the First Cosmic Voids with Euclid DR1
See more Hide
Internship supervisor:
Pauline Vielzeuf - vielzeuf@cppm.in2p3.fr
Description:

Cosmic voids are vast underdense regions of the Universe, representing one of the major components of the large-scale structure. Their study provides unique constraints on structure formation and the properties of cosmology, including dark matter, dark energy, and gravity.


The Euclid satellite will deliver a precise and extensive 3D galaxy survey over a large fraction of the sky, enabling the detection and systematic analysis of cosmic voids on unprecedented scales.


The student will focus on the identification and characterization of the first cosmic voids detected in the Euclid DR1 data. The internship will involve implementing void-finding algorithms, analyzing the statistical properties of voids, and comparing results with simulations to assess their robustness and cosmological significance.


Keywords:
Cosmologie observationnelle
Code:
M2-2526-RE-01
Development and use of artificial intelligence algorithms to analyze supernova observations and prepare the start-up of Rubin/LSST.
See more Hide
Internship supervisor:
Dominique Fouchez - 0491827249 - fouchez@cppm.in2p3.fr
Description:

Twenty years after the discovery of the accelerating expansion of the universe through supernova measurements, the supernova probe remains one of the most accurate means of measuring the cosmological parameters of this recent period in the history of our universe, dominated by the so-called dark energy.


The Rubin Observatory with the Large Survey of Space and Time (Rubin/LSST) will be commissioned in 2025 and will be fully operational by the end of 2025. It is an 8.4-m telescope equipped with a 3.2-billion-pixel camera, the most powerful ever built.


This telescope will take a picture of half the sky every three nights for ten years. This survey will make it possible to measure billions of galaxies with great precision, and to track the variation over time of all transient objects. Together with many other astrophysical studies, it will be a very powerful machine for determining cosmological parameters using many different probes and, in particular, will impose strong constraints on the nature of dark energy. The LSST project aims to discover up to half a million supernovae. This improvement of two to three statistical orders of magnitude over the current data set will enable precise testing of the parameters of dark energy, test general relativity and also impose new constraints on the isotropy of the universe.


In this Master 2 internship, we propose to analyse the first Rubin/LSST images using LSST software and our deep learning method for transient/supernova identification. The work will be prepared and conducted in parallel on existing HSC/Subaru data. Indeed, the HSC data have characteristics very close to those we expect from Rubin/LSST.


The LSST group at CPPM is already involved in precision photometry for LSST, with direct involvement in algorithm validation within DESC/LSST [1][2][3], and has proposed a new deep learning method to improve photometric supernova identification [4] and photometric redshifts [5].


[1] https://www.lsst.org/content/lsst-science-drivers-reference-design-and-anticipated-data-products


[2] https://arxiv.org/abs/1211.0310


[3] https://www.lsst.org/about/dm


[4] https://arxiv.org/abs/1901.01298


[5] https://arxiv.org/abs/1806.06607


[6] https://arxiv.org/abs/1401.4064


Keywords:
Cosmologie observationnelle
Code:
M2-2526-RE-02
Cosmological tests of dark energy and general relativity with DESI galaxies and peculiar velocities from ZTF type-Ia supernovae
See more Hide
Internship supervisor:
Prof. Julian Bautista - julian.bautista@univ-amu.fr
Description:

The context: More than twenty years after the discovery of the accelerated nature of the Universe's expansion, there is still no definitive explanation for its physical origin. Several types of dark energy or even alternatives/extensions to general relativity have been proposed in the literature attempting to explain the acceleration of the expansion. By accurately measuring of both the expansion rate of the Universe as well as the growth rate of structures as a function of cosmic time, we can learn more about this cosmological mystery. Particularly at low redshift when the expansion is accelerated and dark energy dominates the expansion, we are interested in obtaining the best constraints on the growth rate of structures. These measurements can be achieved by combining galaxy positions and their velocities. The statistical properties of the density and velocity field are tightly connected to the underlying cosmological model.


Experiments: Measurements of the expansion and growth rates of the Universe are the main scientific goal of current and future experiments such as the Dark Energy Spectroscopic Instrument (DESI), the Zwicky Transient Facility (ZTF), Euclid and the Vera Rubin Observatory Legacy Survey of Space and Time (Rubin-LSST).

DESI is currently measuring the 40 million galaxy positions (with their redshift) and their lower redshift sample will be the most complete to date.

The ZTF survey will discover more than 5 000 type-Ia supernovae, from which we can derive galaxy velocities. Rubin-LSST will increase this number to the hundreds of thousands.


Goal of thesis: The selected candidate will work towards the joint analysis of DESI and ZTF datasets, which contain millions of galaxies and thousands of type-Ia supernovae. The candidate will get familiarised with the physics and the statistics of galaxy clustering, will code their own analysis pipeline, test it on state-of-the-art simulations, and apply it on real data. The measurement of the growth rate of structures using DESI galaxies and peculiar velocities from ZTF supernovae will enable tests of general relativity on cosmic scales. This study is a key project in the roadmap of DESI and ZTF collaborations.


Profile required: The candidate has to have large interest by cosmology, statistics, data analysis and programming (we use mostly python). English proficiency and team work skills are also required.


Keywords:
Cosmologie observationnelle
Code:
M2-2526-RE-03
Cosmology with Supernovae from the Zwicky Tansient Facility (ZTF)
See more Hide
Internship supervisor:
Benjamin Racine - Dominique Fouchez - racine@cppm.in2p3.fr - fouchez@cppm.in2p3.fr
Description:

In the late 90s, measurements of the distance of Supernovae and the redshift of their host galaxies revealed that the expansion of the Universe was accelerating. More than 20 years after this discovery, the nature of the dark energy at the origin of this phenomenon remains unknown.


The Λ \Lambda CDM concordance model describes a homogeneous, isotropic Universe on large scales, subject to the laws of general relativity (GR). In this model, most of the Universe's energy content comes from cold dark matter and dark energy, introduced as a cosmological constant. The latter behaves like a perfect fluid with negative pressure p, equation of state p = - rho, where rho is the energy density.

Some alternative models (see [1] for a review) introduce scalar fields (quintessence) whose evolution is responsible for the accelerated expansion. These scalar fields can vary in time and space. They can therefore have a time-dependent equation of state and generate anisotropic expansion.

Other models propose to modify the law of gravitation on large scales, mimicking the role of dark energy.

Supernovae remain one of the most accurate probes of the Universe's expansion and homogeneity. In addition, part of the redshift of galaxies is due to a Doppler effect caused by their particular velocities. We can then use supernovae to reconstruct the velocity field on large scales, and measure the growth rate of cosmic structures. This will enable us to test the law of gravitation.

An anisotropy of expansion on large scales, a modification of GR, or an evolution of the equation of state for Dark Energy, would all be revolutionary observations that would challenge our current model.

Until now, supernova surveys have gathered data from multiple telescopes, complicating their statistical analysis. Surveys by the Zwicky Tansient Facility (ZTF: https://www.ztf.caltech.edu/) and the Vera Rubin/LSST Observatory (https://www.lsst.org/) will change all that. They cover the entire sky and accurately measure the distance to tens (hundreds) of thousands of nearby (distant) supernovae.


The CPPM has been working on ZTF data since 2021 and will publish a first cosmological analysis in 2025 with ~3000 SN1a. We have also been involved in the construction and implementation of LSST for years, preparing for the arrival of the first data this summer.

Within the group, we are working on the photometric calibration of the ZTF survey, essential for the measurement precision we need (see ubercalibration [2,3]). A first PhD student developed a pipeline to simulate ZTF and measure the growth rate of structures ([4], defended in 2023), a second student adapted this exercise to LSST ([5], defended in 2025) and a third one started in 2024 to lead the analysis of real data. In addition, three post-doc have joined the group to work on ZTF, and a Chair of Excellence (DARKUNI) is extending this work by combining these data with spectroscopic data from DESI.



The aim of the internship is to develop and perfect this analysis pipeline for measuring the growth rate of structures with the totality of 30000 SN1a of ZTF. We will then use machine learning algorithms to classify the SN1a using photometric data [5].


This is an observational cosmology internship, for a candidate interested in cosmology and data analysis.


[1] https://arxiv.org/abs/1601.06133

[2] https://arxiv.org/abs/astro-ph/0703454v2

[3] https://arxiv.org/abs/1201.2208v2

[4] https://arxiv.org/abs/2303.01198 https://snsim.readthedocs.io/

[5] https://arxiv.org/abs/2401.02945


Keywords:
Cosmologie observationnelle
Code:
M2-2526-RE-04
imXgam
Modeling a multilayer passivation surface for the ClearMind detector
See more Hide
Internship supervisor:
Christian Morel - 04.91.82.76.73 - morel@cppm.in2p3.fr
Description:

The imXgam research team conducts interdisciplinary research activities for imaging applications of ionizing radiation in the health and energy fields. It participates in the ClearMind project whose objective is to develop an optimized detector for highly time-resolved applications, in particular for time-of-flight positron emission tomography (PET).


The measurement of the time of flight of a pair of annihilation photons, i.e. the time between the detection of the two 511 keV photons, allows to constrain the tomographic inversion within a back-projection range determined by the accuracy of the time-of-flight measurement, which is given by the coincidence time resolution (CTR). Knowing that the speed of light in vacuum is 30 cm/ns, a CTR of 10 ps FWHM would allow to localize the electron-positron annihilation with an accuracy of 1.5 mm FWHM, which would be sufficient to obtain an image of the distribution of annihilation points virtually without reconstruction and thus limit the dose required to obtain an image quality equivalent to that of the clinical PET cameras. Currently, state-of-the-art cameras achieve a CTR of 215 ps FWHM. The objective of the ClearMind project is to improve the temporal resolution of the detectors by using a scintillating lead tungstate (PWO) crystal as the input window of a microchannel plate photomultiplier tube (MCP-PMT) and to deposit a photocathode directly on the inner face of the PWO crystal in order to avoid total reflections of scintillation and Cherenkov photons on the PWO/photocathode interface to improve the collection of Cherenkov photons whose emission is practically instantaneous when a photoelectric electron is emitted at a speed higher than the speed of light in the PWO [1].


It is necessary to deposit a passivation layer on the PWO crystal to protect the photocathode. The deposition of a thin layer affects the transmittance of the interface, enabling frustrated transmission of optical photons at incidences above the limit angle [2]. The aim of the internship will be to study the theoretical transmittance of a multilayer passivation between the crystal and its photocathode.


Candidates are invited to contact the person in charge of the thesis subject by attaching a CV with a letter of motivation and the last transcript (the one of the previous year and the one of the current semester, if available).


[1] D. Yvon et al., Design study of a scintronic crystal targeting tens of picoseconds time resolution for gamma ray imaging: the ClearMind detector, J. Instrum. 15 (2020) P07029

[2] L. Cappellugola et al., Modelisation of light transmission through surfaces with thin film optical coating in Geant4, in Conf. Rec. IEEE NSS/MIC 2021, 16-23 Oct, Yokohama (virtual), Japan, IEEE Press


Keywords:
Imagerie médicale
Code:
M2-2526-IM-01
Characterization of the MAPSSIC Intracranial Probe
See more Hide
Internship supervisor:
Mathieu Dupont - 04.91.82.72.19 - mdupont@cppm.in2p3.fr
Sorry, this position is no longer available
Description:

The Centre de Physique des Particules de Marseille (CPPM) is a joint research unit (UMR 7346) under the supervision of the CNRS and Aix-Marseille University. It conducts research both in the field of fundamental physics and in applications involving ionizing radiation.


Satiety and addiction circuits are controlled in the brain by negative or positive feedback loops using neurotransmitters. These circuits can be imaged using positron emission tomography (PET) by labeling neurotransmitters with radioactive positron-emitting isotopes. However, PET scans performed on rats require anesthesia of the small animal, which does not allow for the actual behavior of the brain in waking conditions to be assessed.


The CPPM is participating in the MAPSSIC project, which involves developing an intracranial CMOS pixel probe for positron imaging in awake rats that are free to move around. The IMIC probe, which consists of a needle containing several hundred active CMOS pixels, was developed by the IPHC in Strasbourg to be permanently implanted in the brain of a rat. Equipped with a backpack containing a battery and a wireless transmitter connected to the CMOS pixels, the rat will enable direct imaging of the positrons emitted during the decay of a radioactive tracer marking a neurotransmitter under study.


Main activity:


The internship will consist of analyzing 2D images acquired with IMIC probes (segmentation of pixel aggregates resulting from positron detection, 2D imaging of the count rate of the probe immersed in a radioactive solution) in order to characterize the performance of the MAPSSIC probe and optimize its acquisition parameters.


Desired profile:



- Proficiency in Python


- Experience in image analysis


- Knowledge of machine learning is a plus


The internship will last between 4 and 6 months and will be paid.


Keywords:
Imagerie médicale
Code:
M2-2526-IM-02

Internship M1


KM3NeT
Development of Neutrino Tagging Algorithms
See more Hide
Internship supervisor:
Description:

Context

The study of neutrino properties is currently one of the most active fields in particle physics. Many fundamental questions remain open, such as the origin of their mass or their hierarchy. Experimentally studying neutrinos remains particularly challenging: neutrinos interact extremely weakly with matter, and their characteristics are currently inferred only from the rare interactions observed in large detectors. Measurements of individual neutrino properties in these detectors are still limited in precision — their energy, for example, is generally known only to within 10 to 20%.


To overcome these limitations, researchers at CPPM, in collaboration with several international teams, are developing a new experimental approach called neutrino tagging. This method aims to determine the properties of a neutrino at the moment of its production, during the decay of a pion into a muon and a neutrino. Since the pion and muon are charged particles, their trajectories can be measured with great precision. The characteristics of the neutrino can then be inferred using simple kinematic relations, allowing in particular for an estimate of its energy with a relative precision better than one percent.


The main challenge of this method lies in the extremely high intensity of the pion beams used to produce neutrinos (on the order of 1010 pions per second). Reconstructing the trajectories of these particles and their decay products represents a major technological and algorithmic challenge.


Internship objective

The internship aims to contribute to the development and evaluation of machine-learning algorithms designed to meet this challenge, as well as to the optimization of the specifications of the trackers required to implement the method.


Skills

  • Neutrino physics
  • Detector physics (trackers)
  • Machine learning
  • C++ and Python programming
  • LaTeX


Keywords:
Physique des particules
Code:
M1-2526-KM-01
MADMAX
Analyse de données de prototypes de l'expérience MadMax
See more Hide
Internship supervisor:
Jean-Pierre Ernenwein - ernenwein@cppm.in2p3.fr
Sorry, this position is no longer available
Description:

L'expérience MadMax cherche à démontrer l'existence d'axions, bosons scalaires initialement introduits pour expliquer naturellement l'absence de violation de la symétrie CP en Chromodynamique quantique. Le domaine de masse investigué par MadMax est entre 40 et 400 microeV. Le principe de recherche est l'induction d'un champ électromagnétique (EM) par le champ d'axions dans un champ magnétique (~10T). Le champ EM induit dépend de la permittivité diélectrique du milieu. La discontinuité résultante aux interfaces entre différents milieux donne lieu à la production d'une onde EM, qui pourrait être détectée. La fréquence est de l'ordre de 10-100 GHz, la puissance est de l'ordre de 10^{-24} W. La faiblesse du signal requiert un dispositif capable d'amplifier intrinsèquement le signal: l'exploitation de plusieurs disques dielectriques dans MadMax permet d'additionner constructivement les signaux, et/ou de créer des cavités résonantes, afin d'atteindre une puissance détectable par une antenne (requérant une amplification très bas bruit, et, nominalement, une température de quelques Kelvins). L'ensemble des calculs analytiques de base est détaillé référence [1]. Des prototypes réunissant chacun trois disques diélectriques de diamètre allant jusqu'à 30 cm ont déjà été exploités, sans champ magnétique (utilisable pour la recherche de “Dark Photons” [2]) , avec champ magnétique (1.6T, recherche d'axions [3]), et pour une partie, en cryostat. Il s'agira dans ce stage d'analyser les données de certains prototypes, en portant une attention particulière sur l'étalonnage, essentiel pour extraire un résultat physique, et sur l'analyse statistique.


[1]: Dielectric Haloscopes to search for Axion Dark Matter: Theoretical Foundations, JCAP01(2017)061, DOI 10.1088/1475-7516/2017/01/061, Millar AJ, Raffelt GG, Redondo J, Steffen FD.

[2]: First search for dark photon dark matter with a MADMAX prototype, MadMax Collaboration, Phys. Rev. Lett. 134, 151004, 2025, DOI:

https://doi.org/10.1103/PhysRevLett.134.151004

[3]: First Search for Axion Dark Matter with a MADMAX Prototype, MadMax Collaboration,Phys. Rev. Lett. 135, 041001, 2025, DOI: https://doi.org/10.1103/c749-419q


Keywords:
Astroparticules
Code:
M1-2526-MM-01
Renoir
Cosmic voids in simulations
See more Hide
Internship supervisor:
Description:

This master project focuses on the study of the large and under-dense regions in the distribution of galaxies in our Universe: cosmic voids. We will study these voids through the use of state-of-the-art simulations, together with Alice Pisani. Based on common interest and on student-supervisor initial discussions, the project will focus on either analyzing the size distribution of voids, as well as other common properties like their shape, or on analyzing the distribution of matter and galaxies around voids via their density profile. These statistics can be studied with respect to the impact of alternative physical models on these regions, their general and universal properties or their dependence on cosmological parameters.


Keywords:
Cosmologie observationnelle
Code:
M1-2526-RE-01
Studdy of Snow Ball events on Euclid NISP detectors
See more Hide
Internship supervisor:
Gillard William - gillard@cppm.in2p3.fr
Sorry, this position is no longer available
Description:

The ESA Euclid mission, launched in July 2023, aims to understand the origins of the accelerated expansion of the Universe by studying dark energy and dark matter through detailed observations. Onboard, the NISP instrument (Near Infrared Spectrometer and Photometer) produces images that are crucial for cosmological analyses.


The infrared detectors of the NISP instrument are exposed to cosmic radiation, which leaves residual energy deposits in the images. Among these events, the “Snow Balls” stand out due to their unique shape: they affect a relatively large area of pixels, have an unusual energy distribution, and appear as small round balls, hence their name.


Unlike other instrumental artifacts, Snow Balls do not directly affect scientific analysis. However, their occurrence rate and evolution over time are important parameters to monitor to ensure accurate tracking of detector behavior.


Internship Objectives:


The internship aims to identify, catalog, and characterize “Snow Ball” events in order to assess their frequency and evolution. The main tasks will include:



- Visual identification and catalog creation: manually annotating Snow Ball events in images to create a reference database.


- Machine learning for detection: training and validating an algorithm for automatic detection and classification using the catalog.


- Statistical analysis: studying the properties of Snow Balls, including:

temporal evolution,

occurrence rate per detector,

correlation between size and deposited energy,

comparison with other cosmic-ray-induced events.


Skills Developed:



- Annotation and processing of astronomical images.


- Development of detection and classification algorithms (Python, ML).


- Statistical analysis of instrumental phenomena.


- Understanding of infrared detector behavior under cosmic radiation.


Keywords:
----
Code:
M1-2526-RE-02

Technical Internship


Atlas
Porter un algorithme d'intelligence artificielle sur FPGA
See more Hide
Internship supervisor:
LAUGIER Danièle - laugier@cppm.in2p3.fr
Sorry, this position is no longer available
Description:

Le CPPM est responsable de la conception et de la production d'une carte au format ATCA destinée à la mise à jour du calorimètre à argon liquide de l'expérience ATLAS, installée au CERN. Cette carte repose sur deux FPGA Agilex de dernière génération. L'étudiant aura pour mission de porter un algorithme d'intelligence artificielle, précédemment implémenté sur FPGA Stratix, vers cette nouvelle plateforme. Une fois cette adaptation réalisée, il devra également déployer les nouveaux modèles d'IA développés par l'équipe sur la cible FPGA. En fonction de l'avancement de la production, l'étudiant pourra aussi participer aux tests des cartes et à leur intégration sur les bancs de test du CERN.


Keywords:
Electronique
Code:
Ingenieur-2526-AT-01
Electronique
Amélioration/optimisation d'une carte environnementale connectée
See more Hide
Internship supervisor:
Frederic Hachon - 04 91 82 76 71 - hachon@cppm.in2p3.fr
Description:

Le Centre de Physique des Particules de Marseille (CPPM) est une unité mixte de recherche (UMR7346) d'environ 180 personnes dont la thématique est liée à l'étude et l'exploration des constituants fondamentaux de la matière et de l'univers. Le laboratoire est impliqué dans différentes collaborations internationales qui visent à fournir à la communauté scientifique des expériences capables de mesurer d'infimes particules ou encore d'observer l'univers lointain au moyen de télescopes de dernière génération. Les systèmes de détection et d'observation fonctionnent généralement dans des environnements extrêmes que ce soient dans les profondeurs marines, dans l'espace ou encore au sein d'accélérateurs de particules tels que le CERN.

Certains développements demandent des campagnes de caractérisation dans des salles spécifiques telles que des salles blanches, noires ou d'autres locaux en adéquation avec les spécifications de l'expérience scientifique en cours d'étude.

Dans ce cadre, une équipe du CPPM a développé une carte électronique dédiée à la mesure de paramètres environnementaux (température, humidité, pression, poussières …) qui sont transmis via un réseau LoRa afin de permettre une surveillance en temps réel des salles spécifiques. La variation de ces données peut être critique et nécessitent cette surveillance indispensable afin d'éviter de compromettre les activités en cours dans ces salles.

L'objectif du stage est d'améliorer et de fiabiliser ce développement actuellement en exploitation, afin d'en faire un outil robuste et polyvalent (optimisation de la consommation, configuration intuitive, transmission fiable…).


Activité principale :

Le/la stagiaire devra effectuer son travail en différentes étapes. Dans un premier temps il/elle prendra en main le système existant par l'étude des différents capteurs implémentés sur la carte. Maitrisant le système dans son ensemble, il/elle conduira les travaux suivants :

•Améliorer la consommation énergétique de la carte et proposer des optimisations hardware/software.

•Mettre en place et valider la communication des données via un réseau LoRa.

•Proposer différentes configurations de transmission.

•Développer des scripts pour le traitement et la transmission des données.

•Converger vers une méthode de validation fiable.

•Rendre opensource le hardware et le software en publiant l'ensemble du projet sur github/gitlab.

•Rédiger une documentation technique sur les améliorations proposées, afin d'assurer la pérennité du travail accompli.


Profil recherché :

Étudiant(e) en électronique embarquée, télécommunications, IoT ou informatique industrielle (Bac+5).

•Connaissances en capteurs, microcontrôleurs (Arduino, STM32, ESP32 ou équivalent).

•Notions des protocoles de communication sans fil, idéalement LoRa/LoRaWAN.

•Goût pour l'expérimentation et l'optimisation technique.

•Maîtrise de la mise en place de projet collaboratif (github/gitlab).

•Maîtrise des langages Python, C/ C++.


Contact : CV + lettre de motivation par email avec la référence du stage.


Le stage de 6 mois sera conventionné et rémunéré.


Keywords:
Electronique
Code:
Ingenieur-2526-EL-06
Transmission de données à phase déterministe en O(10)?ps sur FPGA pour l'expérience LHCb du CERN
See more Hide
Internship supervisor:
Frederic Hachon - 04 91 82 76 71 - hachon@cppm.in2p3.fr
Description:

L'expérience LHCb, installée sur le plus grand accélérateur de particules au monde, s'intéresse à l'asymétrie matière/anti-matière. Elle a récemment mis en évidence une violation de symétrie dans un baryon. L'objectif est de poursuivre ces recherches avec des mesures précises de désintégrations rares. Pour cela, une jouvence du détecteur et de l'électronique pour l'acquisition de données est prévue. Un des enjeux cruciaux de cette mise à jour est d'ajouter une mesure temporelle précise aux canaux de détection. Afin de pouvoir distinguer les vertex primaires et secondaires, un déterminisme temporel avec une précision ultime en O(10) ps pic à pic est requis. La technique consiste à distribuer une horloge superposée aux données de contrôle sur des liaisons série par fibre optique, générées depuis des FPGA. Le système compte plus de 2000 liaisons de contrôle.

Le CPPM conçoit une carte basée sur un FPGA Altera dernière génération pour le système d'acquisition de l'expérience LHCb. L'équipe développe également le firmware de bas niveau nécessaire au contrôle des périphériques de cette carte.

Activité principale~:

Le/la stagiaire rejoindra l'équipe de développement du CPPM. Sa mission sera de mettre en œuvre, éprouver et caractériser le déterminisme de phase d'une carte prototype basée sur l'Agilex 7 M-series. Le firmware devra assurer une phase constante entre reset et redémarrage du système, à la fois sur 1 à 48 canaux au sein d'un seul FPGA, et ensuite sur plusieurs cartes FPGA en parallèle. Ce travail incluera la gestion des aléas liés aux variations de température de l'environnement. En outre, le développement de modules VHDL sera nécessaire notamment pour le contrôle et la mesure de phase avec une résolution inférieure à 1 ps.

Profil recherché~:

Vous préparez un diplôme d'ingénieur dans le domaine de l'électronique et de l'informatique. Les compétences suivantes seront appréciées, et une formation sur les outils utilisés sera fournie~:

• Utilisation des appareils de mesure~: serial data analyser, analyseur de spectres~;

• Électronique numérique et transmission de signaux rapides~;

• Conception de firmware FPGA en langage VHDL~;

• Conception logicielle, langage Python (Polars, Pytest), C++


Contact : CV + lettre de motivation par email avec la référence du stage.

Le stage de 6 mois sera conventionné et rémunéré.


Keywords:
Electronique
Code:
Ingenieur-2526-EL-04
Conception d'une infrastructure informatique pour les besoins d'outils CAO
See more Hide
Internship supervisor:
Frederic Hachon - 04 91 82 76 71 - hachon@cppm.in2p3.fr
Description:

Situé au cœur du Parc National des Calanques, sur le campus de Luminy, le CPPM est un laboratoire de recherche commun au CNRS et à Aix-Marseille Université, qui compte environ 180 chercheurs, ingénieurs et doctorants. Le laboratoire étudie des sujets allant de la physique des particules à la physique des astroparticules et à la cosmologie, avec une forte expertise technologique en électronique, mécanique, instrumentation et informatique, permettant la conception et la construction de systèmes de détection de pointe, souvent appelés à fonctionner dans des conditions extrêmes : dans les profondeurs de la mer, dans l'espace ou sous terre. La plupart de nos recherches sont menées dans le cadre de collaborations scientifiques internationales de premier plan et nos contributions sont reconnues dans le monde entier.


Activité principale :

Le stagiaire travaillera au sein du service électronique du laboratoire, composé d'une vingtaine de personnes. Il aura comme objectif principal de concevoir une nouvelle infrastructure informatique en tenant compte des différents projets, des groupes de travail, des types de machines, des ressources et des besoins spécifiques pour le déploiement, l'accès et le support des outils de Conception Assistée par Ordinateur (CAO).

En intégrant le CPPM, vous contribuerez à la réalisation de projets de recherche ambitieux en physique des particules. Vous aurez l'opportunité d'évoluer dans un environnement stimulant et de participer au développement d'outils informatiques essentiels pour la recherche de pointe, tout en renforçant vos compétences dans les infrastructures informatiques modernes.


Le stagiaire devra notamment :

·Analyser l'infrastructure informatique existante ;

·Proposer et concevoir une solution moderne prenant en compte les contraintes des projets de recherche~;

·Explorer des solutions d'infrastructure basées sur le Cloud, des conteneurs ou des machines virtuelles (VM), tout en garantissant l'efficacité et la flexibilité des outils utilisés par le laboratoire.


Connaissances requises :

·Maîtrise de l'environnement Linux~;

·Compétence en script shell~;

·Bonne compréhension de l'architecture des systèmes informatiques et réseaux~;

·Connaissance des technologies de virtualisation, de conteneurisation, et des solutions Cloud.


Encadrement et environnement de travail :

Le stagiaire sera encadré par un ingénieur spécialisé et travaillera en collaboration étroite avec les différents service et groupes de recherche du laboratoire. Il bénéficiera d'un ordinateur de test et d'un accès aux ressources Cloud nécessaires pour mener à bien sa mission.


Contact : CV + lettre de motivation par email avec la référence du stage.

Le stage de 6 mois sera conventionné et rémunéré.


Keywords:
Electronique
Code:
Ingenieur-2526-EL-05
Conception du circuit ASIC en technologie CMOS adapté au détecteur pixellisé pour ITER
See more Hide
Internship supervisor:
Frederic Hachon - 04 91 82 76 71 - hachon@cppm.in2p3.fr
Description:

ITER (International Thermonuclear Experimental Reactor) est un projet international de réacteur à fusion nucléaire, situé en France, dont l'objectif est de démontrer la faisabilité scientifique et technique de la fusion nucléaire comme source d'énergie. Basé sur la fusion du deutérium et du tritium, ITER cherche à reproduire sur Terre les réactions qui se déroulent au cœur des étoiles. Il s'agit du plus grand projet de fusion jamais construit, rassemblant des partenaires du monde entier (UE, Russie, Japon, Chine, Inde, Corée du Sud et États-Unis).

Le système de diagnostiques XRCS (X-Ray Crystal Spectroscopy) d'ITER est un outil essentiel pour surveiller le plasma à très haute température. Il utilise la spectroscopie de rayons X pour mesurer la température et la vitesse de rotation du plasma.

Le laboratoire CPPM est engagé à réaliser un détecteur à rayons X répondant au cahier des charges du système de diagnostiques XRCS. La brique élémentaire du détecteur est un circuit intégré spécifique (ASIC) matriciel de plusieurs millions de transistors. Ce circuit opère comme un appareil photo à pixels, qui doit prendre une image de la détection des rayons X. Plusieurs contraintes de conception sont imposées sur l'électronique, comme la surface, la rapidité, la consommation et la précision.


Activité principale :

Le/la stagiaire va rejoindre l'équipe de développement du CPPM qui doit réaliser un premier prototype pour l'été 2026. Le circuit sera réalisé en technologie 65nm et contiendra des fonctions analogiques et digitales (comme un préamplificateur, un ADC, des DACs de control, un bandgap ou encore des fonctions numériques de contrôle, ou de lecture des données)

Dans un premier temps, le/la stagiaire doit mener une recherche bibliographique détaillée sur les détecteurs à pixels monolithiques et sur les fonctions générales. Ensuite, il lui sera proposé de participer à la conception du circuit prototype selon le cahier des charges fourni.


- Etude bibliographique sur les architectures de la fonction.


- Conception, simulation sous Cadence


- Dessin des masques (Layout)


- Simulation post-layout


Connaissances requises :


-Bonnes connaissances en conception de circuits intégrés en technologie CMOS


Contact : CV + lettre de motivation par email avec la référence du stage.

Le stage de 6 mois sera conventionné et rémunéré.


Keywords:
Electronique
Code:
Ingenieur-2526-EL-01
Développement et mise au point d'un banc de tests pour la caractérisation de circuits intégrés pour le futur accélérateur du CERN
See more Hide
Internship supervisor:
Frédéric Hachon - 04 91 82 76 71 - hachon@cppm.in2p3.fr
Description:

DEPHY est un projet de recherche et développement soutenu par l'institut IN2P3, qui vise à étudier les technologies nécessaires au développement de détecteurs à petits pixels pour les détecteurs de traces dans les futurs accélérateurs de particules et en particulier le FCC (Futur Circular Collider) au CERN. Parmi les objectifs, le projet se concentre sur la conception de circuits de lecture de pixels à haute résolution temporelle de l'ordre de quelques picosecondes, capables de fonctionner dans des environnements soumis à des rayonnements extrêmes.

Les difficultés sont diverses~: Les applications en physique des particules génèrent un flux de données très important et exigent un fonctionnement des détecteurs dans un environnement sévèrement radioactif. La dernière production d'ASIC «~Front-End~» est tolérante à une dose totale (TID) de 500~Mrad (5~MGray) représentant 5 ans d'exploitation.

Pour les applications où le temps est un facteur critique, la technologie CMOS 28~nm présente un intérêt particulier. Un premier ASIC prototype a été conçu au CPPM avec cette technologie et est en cours de tests et de caractérisation. Cet ASIC comprend différents sous-circuits permettant d'une part de caractériser une matrice de 400 pixels (taille~: 25×25~µm) et d'autre part de déterminer la tolérance de la technologie à la dose ionisante (TID) ainsi qu'aux effets des évènements singuliers (SEE).


Activité principale :

Les tests des ASIC's aboutissent à la validation des architectures proposées auprès des collaborations en place où les résultats sont présentés. Un banc de tests polyvalent est déployé actuellement au CPPM permettant à la fois de caractériser la partie analogique des pixels (Amplificateur de charge (BW, bruit…)) et de tester en irradiation, sur sites dédiés, certaines parties du circuit. La carte principale se veut compacte et portable. Elle comprend une électronique embarquée de type BeagleBone (OS Linux), communicant avec un FPGA (Altera-Cyclone III - programmation VHDL). Ce dernier gère les signaux nécessaires au fonctionnement de l'ASIC en test (DUT). Le contrôle-commande s'effectue au niveau de la carte BeagleBone en C++. D'autres paramètres tels que, la consommation, la température, les niveaux d'alimentation, sont enregistrés via un bus I2C. Ces éléments sont indispensables pour s'assurer du bon fonctionnement du DUT.

Le stage de 6 mois devra comporter plusieurs étapes~:

• Prise en main du banc de test.

• Maitrise, débogage des différentes fonctions du banc.

• Amélioration et finalisation de l'ensemble

• Possibilité de proposer une interface utilisateur de type Qt Python.


Connaissances requises :

Le(la) candidat(e) devra posséder :

• des bonnes bases en électronique

• des solides connaissances en programmation VHDL, C++, Qt Python.


Contact : CV + lettre de motivation par email avec la référence du stage.

Le stage de 6 mois sera conventionné et rémunéré.


Keywords:
Electronique
Code:
Ingenieur-2526-EL-02
Développement de protocole 400Gb/s Ethernet sur FPGA pour l'expérience LHCb du CERN
See more Hide
Internship supervisor:
Frederic Hachon - 04 91 82 76 71 - hachon@cppm.in2p3.fr
Sorry, this position is no longer available
Description:

Le Centre de Physique des Particules de Marseille, unité mixte CNRS/Aix-Marseille Université, est un des laboratoires de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), institut du CNRS qui regroupe les moyens de la physique des particules. Le CPPM travaille notamment pour l'expérience LHCb, installée sur le LHC, l'accélérateur de particules le plus puissant du monde, au CERN. Cette expérience s'intéresse à la différence entre matière et anti-matière ainsi qu'à l'extension du modèle standard de la physique.


Fort de l'expérience acquise lors de la conception et fabrication du système d'acquisition capable de traiter 30 Tb/s via 10 000 liens optiques à 5Gb/s en temps réel, le CPPM s'intéresse à la future génération qui vise un débit total de 200 Tb/s. Pour parvenir à cela, un prototype de carte d'acquisition doté d'un FPGA Altera Agilex 7 M-series a été mis au point par le CPPM. Cette carte est dotée d'une interface sérielle capables de transmettre jusqu'à 4x112Gb/s. Pour exploiter pleinement ce débit, les protocoles basés sur UDP sont souvent préférés.


Activité principale~:

Le/la stagiaire rejoindra l'équipe de développement du CPPM. Sa mission sera de mettre en œuvre une preuve de concept d'une pile de protocole 400GbE complète. La brique élémentaire est concentrée dans le transceiver FPGA F-tile FHT doté d'une IP pour supporter la couche physique. En premier lieu, le ou la stagiaire devra mener une recherche bibliographique détaillée sur la spécification IEE 802.3bs.

Profil recherché~:

Vous préparez un diplôme d'ingénieur dans le domaine de l'électronique, Systèmes Embarqués et/ou informatique. Les compétences suivantes seront appréciées, et une formation sur les outils utilisés sera fournie~:

• Maîtrise du langage VHDL/Verilog pour la conception FPGA~;

• Connaissance de l'architecture des protocoles réseau (Ethernet, UDP)~;

• Familiarité avec les outils de synthèse et de simulation FPGA (Quartus Prime, ModelSim)~;

• Une expérience avec les transceivers série à haut débit (SerDes) est un plus.

• Conception logicielle, langage Python (Polars, Pytest), C++


Contact : CV + lettre de motivation par email avec la référence du stage.

Le stage de 6 mois sera conventionné et rémunéré.


Keywords:
Electronique
Code:
Ingenieur-2526-EL-03
HESS-CTA
Developing a Graphical User Interface for the Large Sized Telescope Camera Calibration Package
See more Hide
Internship supervisor:
Franca Cassol - cassol@cppm.in2p3.fr
Description:

The Cherenkov Telescope Array Observatory (CTAO) is the next-generation, global project for ground-based, very-high-energy (VHE) gamma-ray astronomy [1]. Its first Large-Sized Telescope (LST-1) is currently undergoing commissioning at the Observatorio del Roque de los Muchachos in La Palma, Canary Islands [2].


The LST-1 camera utilizes 1,855 photomultiplier tubes (PMTs) that require precise calibration. The existing lstcam_calib package [3] provides Python scripts to process the calibration data. The resulting calibration coefficients are written to disk files, and the associated metadata is stored in a MongoDB database.


This project aims to create a user-friendly Graphical User Interface (GUI) for calibration experts. The GUI will streamline key tasks, including:


• Easily executing the scripts to generate calibration files.

• Enabling or disabling the output data following a data quality check.

• Ergonomically searching the MongoDB database via dedicated backend scripts.


The interface will feature simple menus, buttons, and text widgets designed to call the lstcam_calib scripts in the backend. Streamlit [4] is a suggested graphical package, but the student is free to propose other suitable solutions.


Student Deliverables and Benefits :


The successful candidate will:

• Join a collaborative team of experimental researchers within the LST/CTAO collaboration.

• Present their results in an international working group.

• Develop advanced Python software skills and potentially contribute to open-source analysis packages.


Prerequisites: Medium to high-level proficiency in the Python programming language is required.


[1] CTA Observatory: https://www.cta-observatory.org/

[2] LST-1 : https://doi.org/10.1051/0004-6361/202450059

[3] lstcam_calib : https://zenodo.org/records/15729582

[4] streamlit : https://streamlit.io/


Keywords:
----
Code:
Ingenieur-2526-CT-01
Informatique
Setup and configuration of a dynamic display
See more Hide
Internship supervisor:
Riviere ADrien - 0491827240 - ariviere@cppm.in2p3.fr
Sorry, this position is no longer available
Description:

The laboratory has recently acquired a touchscreen display intended for presenting posters as well as accessing a web application showcasing the experiments in which it is involved. The intern will be responsible for implementing a solution that enables either the presentation of posters or navigation on the presentation website.


Keywords:
Informatique
Code:
Ingenieur-2526-IN-01
Instrumentation
Study of persistence in the infrared detectors of the Euclid space mission
See more Hide
Internship supervisor:
Aurélia Secroun - 04 91 82 72 15 - secroun@cppm.in2p3.fr
Description:

Offer for an engineer or master of science 6 month internship


Euclid (http://www.euclid-ec.org) is a major ESA mission. This space telescope, dedicated to understanding the Universe, was launched in July 2023 and will map the entire sky. It will provide a 3D-mapping of galaxies with unprecedented precision. These measurements of the distant Universe large structures will test the cosmological model, particularly questioning the nature of dark energy. The mapping will be achieved using the NISP spectrophotometer and its 16 infrared detectors, which were calibrated on ground by CPPM, a fundamental step to validate the instrument's performance.


Main Activities


Euclid's infrared detectors were specifically developed for the Euclid mission. At the cutting edge of technology, each detector consists of a 2048 x 2048 pixel array. Persistence, which was revealed during detector calibration at CPPM, has already proven to be a real challenge for the extraction of flight data.

As a first step, we focused on analyzing the ground calibration data. This allowed us to highlight certain dependencies--on temperature, source signal amplitude, and wavelength--that we wish to explore in greater detail. We are therefore preparing for a new round of tests dedicated to these in-depth studies of persistence.


The intern will also be involved in these new tests. They will be responsible for operating the test bench and participating in data acquisition. They will focus on test data and seek to characterize persistence. For

these analyses, they will be able to rely on previously developed Python scripts and will aim to:



- Take ownership of and modify existing codes to meet new analysis requirements


- Extract amplitude and time constant data related to persistence


- Highlight the dependencies of persistence


The intern will participate in team meetings and will be expected to present their work.


Required Knowledge and Abilities



- Strong foundation in programming in Python


- Solid understanding of semiconductor physics and signal processing


- Interest in experimentation


- Enjoys team work


The 6-month internship will be conventionally recognized and paid.


Keywords:
Cosmologie observationnelle
Code:
Ingenieur-2526-IS-01
KM3NeT
ecoconception d'un emetteur acoustique recuperable
See more Hide
Internship supervisor:
Alain Cosquer - 04 91 82 72 42 - cosquer@cppm.in2p3.fr
Description:

CONCEPTION D'UNE SPHERE BATTERIE avec changement de piles lithium


Keywords:
Mécanique
Code:
Ingenieur-2526-KM-01

Bachelor Internship


CPPM welcomes students from bachelor levels (L1, L2 and L3) for an intership.

Applications for internships are centralized by Timothée Theveneaux-Pelzer. To apply, send him a cover letter with your CV, your latest grades and your contact details so that he can get back in touch with you. The administrative file will be followed by Bérénice Fatela.

Contacts : Timothée Theveneaux-Pelzer, Jocelyne Munoz and Bérénice Fatela

Secondary School


We welcome college and high school students for internships for defined periods of time. All requests must be justified but cannot be accepted, given the limited number of places.

  • for college level: one week in December (before the Christmas holidays)

Contacts: Bérénice Fatela, Fabrice Feinstein, Julien Zoubian

  • for students in Year 10: week in June

Contacts: Marlon Barbero, Julien Cogan, Bérénice Fatela

TIPE


Since 1998, CPPM accomodates pupils of preparatory classes in order to help them carry out their TIPE.

Most of them obtained, at the time of their TIPE test, a higher grade than the national average and succesfully integrated an engineering school.

Contact: Heide Costantini